\(\dfrac{x-3}{2014}\)+\(\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)

\(\Leftrightarrow\dfrac{x-3}{2014}-1+\dfrac{x-2}{2015}-1=\dfrac{x-1}{1008}-2+\dfrac{x}{2017}-1\) \(\Leftrightarrow\dfrac{x-3-2014}{2014}+\dfrac{x-2-2015}{2015}=\dfrac{x-1-2016}{1008}-\dfrac{x-2017}{2017}\) \(\Leftrightarrow\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{1008}+\dfrac{x-2017}{2017}\)

\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\right)=0\)

Vì: \(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\ne0\)

Suy ra: x -2017 = 0

=> x = 2017

9 tháng 3 2018

\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)

\(\dfrac{x-3}{2014}-1+\dfrac{x-2}{2015}-1=\dfrac{x-1}{2008}-2+\dfrac{x}{2017}-1\)

\(\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2008}+\dfrac{x-2017}{2017}\)

\(\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2008}-\dfrac{x-2017}{2017}=0\)

\(\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2008}-\dfrac{1}{2017}\right)=0\)

⇔x-2017=0

⇔x=2017

vậy phương trình có tập nghiệm là S={2017}

20 tháng 12 2017

\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)

\(\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-1}{1008}-2\right)+\left(\dfrac{x}{2017}-1\right)\)

\(\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{1008}-\dfrac{x-2017}{2017}=0\)

\(\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\right)=0\)

\(x-2017=0\)\(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\ne0\)

\(\Rightarrow x=2017\)

16 tháng 1 2018

a) 4( x - 2 ) - 3 ( x - 3 ) = 1

4x - 8 - 3x + 9 =1

x = 0

16 tháng 1 2018

a)\(\dfrac{x-2}{3}-\dfrac{x-3}{4}=1\Leftrightarrow\dfrac{4x-8-3x+9}{12}=1\) ⇔x+1=12⇔x=11 Vậy phương trình đã cho có tập nghiệm S=\(\left\{11\right\}\) b)\(\dfrac{x-1}{2015}+\dfrac{x-2}{2014}+\dfrac{x-5}{2011}+\dfrac{x+1}{2017}=4\) \(\Leftrightarrow\left(\dfrac{x-1}{2015}-1\right)+\left(\dfrac{x-2}{2014}-1\right)+\left(\dfrac{x-5}{2011}-1\right)+\left(\dfrac{x+1}{2017}-1\right)=4-4\) \(\Leftrightarrow\dfrac{x-1-2015}{2015}+\dfrac{x-2-2014}{2014}+\dfrac{x-5-2011}{2011}+\dfrac{x+1-2017}{2017}=0\) \(\Leftrightarrow\dfrac{x-2016}{2015}+\dfrac{x-2016}{2014}+\dfrac{x-2016}{2011}+\dfrac{x-2016}{2017}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\right)=0\)

\(\Leftrightarrow x-2016=0\) (vì \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\ne0\) )

⇔x=2016

Vậy phương trình đã cho có tập nghiệm S=\(\left\{2016\right\}\)

c)3(x-1)-5(x+4)+6(2-x)=7 ⇔3x-3-5x-20+12-6x=7⇔3x-5x-6x=7-12+20+3⇔-8x=18⇔\(x=\dfrac{-9}{4}\)

Vậy phương trình đã cho có tập nghiệm S=\(\left\{\dfrac{-9}{4}\right\}\)

5 tháng 3 2017

b) \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{1}{18}\\< =>\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ < =>\dfrac{1}{x+1}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ quyđồngmẫuvàkhửmẫu\\ x^{2^{ }}+6x-27=0\\ giảipttìmđược:x=3;x=-9\)

5 tháng 3 2017

a) \(\frac{x-2015}{1}+\frac{x-2014}{2}+\frac{x-2013}{3}+...+\frac{x-1}{2015}+\frac{x}{2016}=0\\ \Leftrightarrow\frac{x-2015}{1}-1+\frac{x-2014}{2}-1+...+\frac{x-1}{2015}-1+\frac{x}{2016}-1=-2016\)

\(\Leftrightarrow\frac{\left(x-2016\right).1}{1}+\frac{\left(x-2016\right).1}{2}+\frac{\left(x-2016\right).1}{3}+...+\frac{\left(x-2016\right).1}{2015}+\frac{\left(x-2016\right).1}{2016}=-2016\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=-2016\)

tới đây mình chịu. mình nghĩ là phương trình bạn cho là bằng 2016 chứ, như thế giải mới được, còn như này thì mình bó tay

b)

\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\\ \Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\)

\(\Leftrightarrow x^2+8x+12-32=0\\ \Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+10=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-10\\x=2\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={-10;2}

1 tháng 3 2017

\(\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x}{1008}+\dfrac{x+3}{2013}+1\)

\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x}{1008}+\dfrac{x+2016}{2013}\)

\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x}{1008}-\dfrac{x+2016}{2013}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(-\dfrac{x}{1008}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2016=0\)

\(\Leftrightarrow x=-2016\)

1 tháng 3 2017

\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x}{1008}+1+\frac{x+3}{2013}\)

\(\Leftrightarrow\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=\frac{x+1008}{1008}+1+\frac{x+3}{2013}+1\)

\(\Leftrightarrow\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{1008}+\frac{x+2016}{2013}\)

\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{1008}-\frac{1}{2013}\right)=0\)

\(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{1008}+\frac{1}{2013}\right)\ne0\)nên

x+2016=0\(\Leftrightarrow\)x=-2016

30 tháng 12 2017

\(a,\dfrac{1+x}{2017}+\dfrac{2+x}{2016}+\dfrac{3+x}{2015}=-3\)

\(\Leftrightarrow\dfrac{1+x}{2017}+1+\dfrac{2+x}{2016}+1+\dfrac{3+x}{2015}+1=-3+3\)

\(\Leftrightarrow\dfrac{1+x+2017}{2017}+\dfrac{2+x+2016}{2016}+\dfrac{3+x+2015}{2015}=0\)

\(\Leftrightarrow\dfrac{x+2018}{2017}+\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

\(\Leftrightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b,\(\dfrac{x-\dfrac{3x-4}{5}}{15}=\dfrac{5x-\dfrac{3-x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{5x-3x+4}{5}}{15}=\dfrac{\dfrac{10x-3+x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{2x+4}{5}}{15}=\dfrac{\dfrac{11x-3}{2}}{5}-\dfrac{5x-5}{5}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3}{10}-\dfrac{10x-10}{10}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3-10x+10}{10}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{x+7}{10}\)

\(\Leftrightarrow10\left(2x+4\right)=75\left(x+7\right)\)

\(\Leftrightarrow20x+40=75x+525\)

\(\Leftrightarrow20x-75x=525-40\)

\(\Leftrightarrow-55x=485\)

\(\Leftrightarrow x=-\dfrac{97}{11}\)

30 tháng 12 2017

a) \(\dfrac{1+x}{2017}+\dfrac{2+x}{2016}+\dfrac{3+x}{2015}=-3\)

\(\Leftrightarrow\dfrac{1+x}{2017}+1+\dfrac{2+x}{2016}+1+\dfrac{3+x}{2015}+1=0\)

\(\Leftrightarrow\dfrac{x+2018}{2017}+\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

\(\Rightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b) \(\dfrac{x-\dfrac{3x-4}{5}}{15}=\dfrac{5x-\dfrac{3-x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{5x-3x+4}{5}}{15}=\dfrac{\dfrac{10x-3+x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3}{10}-x+1\)

\(\Leftrightarrow\dfrac{4x+8}{150}=\dfrac{165x-45}{150}-\dfrac{150x-150}{150}\)

\(\Leftrightarrow4x+8=165x-45-150x+150\)

\(\Leftrightarrow4x-165x+150x=-45+150-8\)

\(\Leftrightarrow-11x=97\)

\(\Leftrightarrow x=-\dfrac{97}{11}\)

\(S=\left\{-\dfrac{97}{11}\right\}\)

8 tháng 2 2018

a.

\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+3}{4}=3-\dfrac{x+2}{3}\)

\(\Leftrightarrow\dfrac{\left(x+1\right).6}{12}+\dfrac{\left(x+3\right).3}{12}=\dfrac{36}{12}-\dfrac{\left(x+2\right).4}{12}\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow9x+15=28-4x\)

\(\Leftrightarrow9x+4x=28-15\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

8 tháng 2 2018

a) \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+3\left(x+3\right)}{12}=\dfrac{36-4\left(x+2\right)}{12}\)

\(\Leftrightarrow6\left(x+1\right)+3\left(x+3\right)=36-4\left(x+2\right)\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow9x+15=-4x+28\)

\(\Leftrightarrow9x+4x=28-15\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

Vậy ................................

15 tháng 5 2018

\(\dfrac{x+3}{2011}+\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\ge\dfrac{3x}{2014}\)

\(\dfrac{x+3}{2011}+1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\ge\dfrac{3x}{2014}+3\)

\(\dfrac{x+2014}{2011}+\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\ge3\left(\dfrac{x+2014}{2014}\right)\)

\(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)\ge0\)

\(\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)>0\) (bạn có thể chứng minh nếu thích )

Nên \(x+2014\ge0\)

\(\Leftrightarrow x\ge-2014\)

Vậy

có 1 lỗi nhỏ

1 tháng 1 2018

\(\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}\\ \Leftrightarrow\dfrac{x-1}{9}-1+\dfrac{x-2}{8}-1+\dfrac{x-3}{7}-1=\dfrac{x-9}{1}-1+\dfrac{x-8}{2}-1+\dfrac{x-7}{3}-1\\ \Leftrightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\\ \Leftrightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\Leftrightarrow x-10=0\\ \Leftrightarrow x=10\)

1 tháng 1 2018

Trừ 2 vế với 1:

\(\Rightarrow\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}+3=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}+3\)

\(\Rightarrow\left(\dfrac{x-1}{9}-1\right)+\left(\dfrac{x-2}{8}-1\right)+\left(\dfrac{x-3}{7}-1\right)=\left(\dfrac{x-9}{1}-1\right)+\left(\dfrac{x-8}{2}-1\right)+\left(\dfrac{x-7}{3}-1\right)\)

\(\Rightarrow\left(\dfrac{x-1}{9}-\dfrac{9}{9}\right)+\left(\dfrac{x-2}{8}-\dfrac{8}{8}\right)+\left(\dfrac{x-3}{7}-\dfrac{7}{7}\right)=\left(\dfrac{x-9}{1}-\dfrac{1}{1}\right)+\left(\dfrac{x-8}{2}-\dfrac{2}{2}\right)+\left(\dfrac{x-7}{3}-\dfrac{3}{3}\right)\)

\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-3}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\)

\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}-\dfrac{x-10}{1}-\dfrac{x-10}{2}-\dfrac{x-10}{3}\)

\(\Rightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left(x-10\right)=0\)

\(\Rightarrow x=10\)