Giải phương trình:
\(\dfrac{x-2005}{9}+\dfrac{4x-8030}{19}=\dfrac{2x-4004}{24}+\dfrac{3x-6022}{20}\)
\(\dfrac{x-2005}{9}+\dfrac{4x-8030}{19}=\dfrac{2x-4004}{24}+\dfrac{3...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình:
\(\dfrac{x-2005}{9}+\dfrac{4x-8030}{19}=\dfrac{2x-4004}{24}+\dfrac{3x-6022}{20}\)
\(\dfrac{x+1}{11}-\dfrac{2x-5}{15}=\dfrac{3x-47}{17}-\dfrac{4x-59}{19}\)
\(\Leftrightarrow\left(\dfrac{x+1}{11}-1\right)-\left(\dfrac{2x-5}{15}-1\right)=\left(\dfrac{3x-47}{17}+1\right)-\left(\dfrac{4x-59}{19}+1\right)\)
\(\Leftrightarrow\dfrac{x-10}{11}-\dfrac{2\left(x-10\right)}{15}=\dfrac{3\left(x-10\right)}{17}-\dfrac{4\left(x-10\right)}{19}\)
\(\Leftrightarrow\dfrac{x-10}{11}-\dfrac{2\left(x-10\right)}{15}-\dfrac{3\left(x-10\right)}{17}+\dfrac{4\left(x-10\right)}{19}=0\)
\(\Leftrightarrow\left(x-10\right)\left(\dfrac{1}{11}-\dfrac{1}{15}-\dfrac{1}{17}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
Vậy x = 10
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
Giải phương trình
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+\dfrac{13}{13}+\dfrac{2x+45}{15}-\dfrac{15}{15}=\dfrac{3x+8}{37}+\dfrac{37}{37}+\dfrac{4x+69}{9}-\dfrac{9}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)=\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)-\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+15=0\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\end{matrix}\right.\)
Do đó: \(x=-15\)
Vậy \(S=\left\{-15\right\}\)
a) 1x−3+3=x−32−x1x−3+3=x−32−x ĐKXĐ: x≠2x≠2
Khử mẫu ta được: 1+3(x−2)=−(x−3)⇔1+3x−6=−x+31+3(x−2)=−(x−3)⇔1+3x−6=−x+3
⇔3x+x=3+6−13x+x=3+6−1
⇔4x = 8
⇔x = 2.
x = 2 không thỏa ĐKXĐ.
Vậy phương trình vô nghiệm.
b) 2x−2x2x+3=4xx+3+272x−2x2x+3=4xx+3+27 ĐKXĐ:x≠−3x≠−3
Khử mẫu ta được:
14(x+3)−14x214(x+3)−14x2= 28x+2(x+3)28x+2(x+3)
⇔14x2+42x−14x2=28x+2x+6⇔14x2+42x−14x2=28x+2x+6
⇔
\(2x^4+3x^3+8x^2+6x+5=0\)
\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)
\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)
Vậy tập nghiệm của pt là \(S=\varnothing\)
b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)
\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow x-357=0\Leftrightarrow x=357\)
Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow x+15=0\)
\(\Leftrightarrow x=-15\)
Vậy x = -15.
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\\ \Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\\ \Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\left(x+15\right)\dfrac{1}{13}+\left(x+15\right)\dfrac{2}{15}=\left(x+15\right)\dfrac{3}{37}+\left(x+15\right)\dfrac{4}{9}\\ \Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
vì:\(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\) nên:
x+15=0 =>x=-15
vậy phương trình có tập nghiệm là S={-15}