\(\dfrac{\left(x+1\right)^3-1}{\left(x-1\right)^3+1}=1\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x+1\right)^3-1=\left(x-1\right)^3+1\)

\(\Leftrightarrow x^3-3x^2+3x-1+1=x^3+3x^2+3x+1-1\)

\(\Leftrightarrow-6x^2=0\)

hay x=0

30 tháng 6 2019

a,Bạn xét 3 th

th1: x>=-1

th2: 1>x>-1

th3:x<=1

rồi trong từng th bạn bỏ dấu gttd và giải

b, \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)

tương đương \(x^2+\frac{144}{x^2}=10\left(x-\frac{12}{x}\right)\)(nhân cả 2 vế với 3)

tương đương \(\left(x-\frac{12}{x}\right)^2+24-10\left(x-\frac{12}{x}\right)\)=0

đặt (x-12/x)=a

khi đó a^2-10a+24=0

giải a rồi tìm x thôi 

c, đặt \(\sqrt[3]{x}\)=a

khi đó ta có 2a^2-5a=3

giải a rồi tìm x thôi

Chúc bạn học tốt!

19 tháng 7 2016

- Cái ở dưới có vẻ dễ :)

19 tháng 7 2016

k vao se co cau tra loi

NV
2 tháng 3 2020

ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left(2x-1\right)x-\left(2x-1\right)\sqrt{x+3}-x^2+x+3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-\sqrt{x+3}\right)-\left(x^2-x-3\right)=0\)

\(\Rightarrow\frac{\left(2x-1\right)\left(x^2-x-3\right)}{x+\sqrt{x+3}}-\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(\frac{2x-1}{x+\sqrt{x+3}}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\\frac{2x-1}{x+\sqrt{x+3}}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\x-1=\sqrt{x+3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left(x-1\right)^2=x+3\end{matrix}\right.\)

Bạn tự giải nốt

9 tháng 12 2019

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!