\(\dfrac{15x}{x^2+3x-4}-1=12.\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-4\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12\left(\dfrac{3x-3+x+4}{3\left(x+4\right)\left(x-1\right)}\right)\)

\(\Leftrightarrow\dfrac{3(12x-x^2+4)}{3\left(x-1\right)\left(x+4\right)}=12\left(\dfrac{4x+1}{3\left(x+4\right)\left(x-1\right)}\right)\)

\(\Leftrightarrow-x^2+12x+4=16x+4\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

29 tháng 1 2018

qui đồng là xong lười làm hả hiha

13 tháng 3 2017

b)

\(\dfrac{1}{x-1}+\dfrac{1}{x-2}=\dfrac{1}{x+2}+\dfrac{1}{x+1}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x+1}=\dfrac{1}{x+2}-\dfrac{1}{x-2}\)

\(\Leftrightarrow\dfrac{2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{2}{x^2-1}=\dfrac{-4}{x^2-4}\)

\(\Leftrightarrow2x^2-8=-4x^2+4\) ( điều kiện \(x\ne\pm1,x\ne\pm2\) )

\(\Leftrightarrow6x^2=12\)

\(\Rightarrow x=\pm\sqrt{2}\)

13 tháng 3 2017

a )

\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)

\(\Leftrightarrow\dfrac{15x-\left(x^2+3x-4\right)}{x^2+3x-4}=\dfrac{12}{x+4}+\dfrac{12}{3x-3}\)

\(\Leftrightarrow\dfrac{12x-x^2+4}{x^2+4x-x-4}=\dfrac{48x+12}{\left(x+4\right)\left(3x-3\right)}\)

\(\Leftrightarrow\dfrac{12x-x^2+4}{x\left(x+4\right)-\left(x+4\right)}=\dfrac{48x+12}{3\left(x+4\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{12x-x^2+4}{\left(x+4\right)\left(x-1\right)}=\dfrac{48x+12}{3\left(x+4\right)\left(x-1\right)}\)

\(\Leftrightarrow12x-x^2+4=\dfrac{48x+12}{3}\)

\(\Leftrightarrow12x-x^2+4=16x+4\)

\(\Leftrightarrow x^2+8x=0\)

\(\Delta=b^2-4ac\)

\(\Delta=64\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-8+\sqrt{64}}{2}=0\left(nhận\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-8-\sqrt{64}}{2}=-8\left(loại\right)\end{matrix}\right.\)

Do \(x=-8\) không thỏa mãn phương trình

Vậy \(x=0\)

18 tháng 8 2017

a) \(\Leftrightarrow\dfrac{15x}{x^2+3x-4}-1=\dfrac{12}{x+4}+\dfrac{4}{x-1}\)

\(\Leftrightarrow\dfrac{15x}{x^2+4x-x-4}-\dfrac{12}{x+4}-\dfrac{4}{x-1}=1\)

\(\Leftrightarrow\dfrac{15x}{\left(x-1\right)\left(x+4\right)}-\dfrac{12}{x+4}-\dfrac{4}{x-1}=1\)

\(\Leftrightarrow\dfrac{15x-12x+12-4x-16}{\left(x-1\right)\left(x+4\right)}=1\)

\(\Leftrightarrow\dfrac{-1}{x-1}=1\)

\(\Leftrightarrow x-1=-1\)

\(\Rightarrow x=0\)

tick cho t vs hik

18 tháng 8 2017

b) \(\Leftrightarrow\left|x-2\right|+3=5\)

\(\Leftrightarrow\left|x-2\right|=5-3\)

\(\Leftrightarrow\left|x-2\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

12 tháng 3 2017

Theo bài ra , ta có :

\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)

\(\Leftrightarrow\dfrac{15x}{\left(x-1\right)\left(x+4\right)}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3\left(x-1\right)}\right)\)

ĐKXĐ : \(x\ne+1;x\ne-4\)

\(45x-3\left(x-1\right)\left(x+4\right)=36\left(x-1\right)+12\left(x+4\right)\)

\(\Leftrightarrow45x-3x^2-3x+12=36x-36+12x+48\)

\(\Leftrightarrow-3x^2-6x=0\)

\(\Leftrightarrow-3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-2\left(TMĐK\right)\end{matrix}\right.\)

Vậy S={0;-2}

12 tháng 3 2017

làm sao ra (x-1)(x+4)

24 tháng 4 2017

Giải bài 7 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

26 tháng 7 2017

Theo đề ta có:

\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)

\(\Leftrightarrow\dfrac{15x}{\left(x-1\right)\left(x+4\right)}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3\left(x-1\right)}\right)\)

ĐKXĐ : \(x\ne1;x\ne-4\)

\(45x-3\left(x-1\right)\left(x+4\right)=36\left(x-1\right)+12\left(x+4\right)\)

\(\Leftrightarrow45x+3x^2-3x+12=36x-36+12x+48\)

\(\Leftrightarrow-3x^2-6x=0\)

\(\Leftrightarrow-3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-2\left(TMĐK\right)\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)

\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)

=>3x+5<10x-30

=>-7x<-35

hay x>5

b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)

=>14x-80>-11x

=>25x>80

hay x>16/5

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn