K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

Ta có:

\(x^2+2x=x\left(x+2\right)\)

\(x^2+6x+8=x^2+2x+4x+8=x\left(x+2\right)+4\left(x+2\right)=\left(x+2\right)\left(x+4\right)\)

\(x^2+10x+24=x^2+4x+6x+24=x\left(x+4\right)+6\left(x+4\right)=\left(x+4\right)\left(x+6\right)\)

\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)

Phương trình trở thành:

\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=3\)

\(\Leftrightarrow2\left(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=3\)

\(\Leftrightarrow2\left(\dfrac{1}{x}-\dfrac{1}{x+8}\right)=3\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{3}{2}\Leftrightarrow3x\left(x+8\right)=16\Leftrightarrow x^2+8x=\dfrac{16}{3}\Leftrightarrow x=0,6188021535\)

bỏ số 1 ở đầu thì giải dc á, còn có số 1 thì chịu

11 tháng 7 2017

\(\dfrac{1}{x+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=\dfrac{4}{105}\)

\(\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\dfrac{x+8-x}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\dfrac{8}{x.\left(x+8\right)}=\dfrac{8}{105}\)

\(\Rightarrow x\left(x+8\right)=105\)

\(x^2+8x-105=0\)

\(\left(x-7\right)\left(x+15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

29 tháng 11 2018

1) \(\dfrac{x^2-4}{x^2+2x+1}:\dfrac{4-2x}{2x+2}=\dfrac{\left(x-2\right)\left(x+2\right)2\left(x+1\right)}{\left(x+1\right)^22\left(2-x\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x+1\right)}{-2\left(x-2\right)\left(x+1\right)\left(x+1\right)}=\dfrac{-\left(x+2\right)}{x+1}=\dfrac{-x-2}{x+1}\)

2) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)=\dfrac{x+1}{x+2}:\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}=\dfrac{x^2+6x+9}{x^2+4x+4}\)

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

17 tháng 12 2017

\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)

\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)

\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{32}{1-x^{32}}\)

28 tháng 4 2023

\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow x\left(x+8\right)=105\)

\(\Leftrightarrow x^2+8x-105=0\)

\(\Leftrightarrow x^2-7x+15x-105=0\)

\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)

 

29 tháng 11 2018

Phân thức 1 xác định \(\Leftrightarrow5x+2\ne0\Leftrightarrow x\ne\dfrac{-2}{5}\)

Phân thức 2 xác định \(\Leftrightarrow x^2-6x+9\ne0\Leftrightarrow\left(x-3\right)^2\Leftrightarrow0\Leftrightarrow x-3\ne0\Leftrightarrow x\ne3\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne-1\\x\ne-\dfrac{1}{2}\end{matrix}\right.\)

\(\dfrac{x^2-4x+1}{x+1}+2=-\dfrac{x^2-5x+1}{2x+1}\)

\(\Leftrightarrow\) \(\dfrac{x^2-2x+3}{x+1}=-\dfrac{x^2-5x+1}{2x+1}\)

\(\Leftrightarrow\) \(\dfrac{\left(x^2-2x+3\right)\left(2x+1\right)}{\left(x+1\right)\left(2x+1\right)}=\dfrac{-\left(x^2-5x+1\right)\left(x+1\right)}{\left(2x+1\right)\left(x+1\right)}\)

\(\Leftrightarrow\left(x^2-2x+3\right)\left(2x+1\right)=-\left(x^2-5x+1\right)\left(x+1\right)\)

\(\Leftrightarrow2x^3-3x^2+4x+3=-x^3+4x^2+4x-1\)

\(\Leftrightarrow2x^3-3x^2+4x+3+x^3-4x^2-4x+1=0\)

\(\Leftrightarrow3x^3-7x^2+4=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{2}{3};1;2\right\}\)

14 tháng 1 2019

a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)

\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)

\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)

\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)

b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2=6x^2+6x+6\)

\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)

\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)

\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)

\(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)

\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)