K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

\(\Leftrightarrow3x^2+9x+4x+12=0\Leftrightarrow3x\left(x+3\right)+4\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(3x+4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+4=0\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{4}{3}\end{matrix}\right.\)

7 tháng 3 2021

\(3x^2+13x+12=0\)

\(\Leftrightarrow3\left(x^2+\dfrac{13}{3}x+4\right)=0\Leftrightarrow x^2+\dfrac{13}{3}x+4=0\)

\(\Leftrightarrow x^2+3x+\dfrac{4}{3}x+4=0\)

\(\Leftrightarrow x\left(x+3\right)+\dfrac{4}{3}\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+\dfrac{4}{3}\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-3\end{matrix}\right.\)

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

16 tháng 4 2021

a)9x2 - 3 = ( 3x + 1 )( 2x - 3 )

<=> 9x2 - 3 = 6x2 - 7x  - 3

<=> 3x2 + 7x = 0

<=> x( 3x + 7 ) = 0 

<=> x = 0 hoặc x = -7/3

b) 6x2 - 13x + 6 = 0

<=> 6x2 - 9x - 4x + 6 = 0

<=> 3x( 2x - 3 ) - 2( 2x - 3 ) = 0

<=> ( 2x - 3 )( 3x - 2 ) = 0

<=> x = 3/2 hoặc x = 2/3

c) \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)( ĐKXĐ : x ≠ ±1 )

<=> \(\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

=> 3x + 3 = -3x - 2 - 4x + 4

<=> 10x = -1 <=> x = -1/10 (tm)

16 tháng 4 2021

a, \(9x^2-3=\left(3x+1\right)\left(2x-3\right)\Leftrightarrow9x^2-3=6x^2-9x+2x-3\)

\(\Leftrightarrow9x^2-3=6x^2-7x-3\Leftrightarrow3x^2+7x=0\Leftrightarrow x\left(3x+7\right)=0\Leftrightarrow x=0;x=-\frac{7}{3}\)

Vậy tập nghiệm của phương trình là S = { -7/3 ; 0 } 

b, \(6x^2-13x+6=0\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\Leftrightarrow x=\frac{2}{3};x=\frac{3}{2}\)

Vậy tập nghiệm của phương trình là S = { 2/3 ; 3/2 } 

c, \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}ĐK:x\ne\pm1\)

\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3x+3=-3x-2-4x+4\Leftrightarrow3x+3=-7x+2\)

\(\Leftrightarrow10x=-1\Leftrightarrow x=-\frac{1}{10}\)Vậy tập nghiệm của phương trình là S = { -1/10 } 

\(x^4-3x^3+4x^2-3x-1=0\)

\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow(x^3+x^2+x^2+x+x+1)\left(x+1\right)=0\)
\(\Leftrightarrow[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)]\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}(x+1)^2=0\\x^2+x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\\varnothing\end{cases}}\Rightarrow x=-1\)

21 tháng 2 2018

\(3x^2-13x+4=0\)

\(\Leftrightarrow3x^2-12x-x+4=0\)

\(\Leftrightarrow\left(3x^2-12x\right)-\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\) hoặc \(x=4\)

21 tháng 2 2018

ĐKXĐ: x khác 4

\(\dfrac{2x^3+5x^2-3x}{x^2-x-12}=0\)

\(\Leftrightarrow\dfrac{2x^3+6x^2-x^2-3x}{x^2+3x-4x-12}=0\)

\(\Leftrightarrow\dfrac{\left(2x^3+6x^2\right)-\left(x^2+3x\right)}{\left(x^2+3x\right)-\left(4x+12\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2\left(x+3\right)-x\left(x+3\right)}{x\left(x+3\right)-4\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(2x^2-x\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-x}{x-4}=0\)

\(\Leftrightarrow\dfrac{x\left(2x-1\right)}{x-4}=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x=\dfrac{1}{2}\)

28 tháng 1 2022

\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)

\(\Leftrightarrow5x^3+30x^2+3x+9=0\)

\(\Leftrightarrow x=-5,95...\)

\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)

\(\Leftrightarrow12x^2-47x+26=0\)

<=> (3x - 2)(4x - 13) = 0

<=> x = 2/3 hoặc x = 13/4

c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Câu 1:

Đặt \(x+1=a\). Khi đó \(x+3=a+2; x-1=a-2\).

PT đã cho tương đương với:

\((a+2)^4+(a-2)^4=626\)

\(\Leftrightarrow 2a^4+48a^2+32=626\)

\(\Leftrightarrow a^4+24a^2-297=0\)

\(\Leftrightarrow (a^2+12)^2=441\)

\(\Rightarrow a^2+12=\sqrt{441}=21\) (do \(a^2+12>0)\)

\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)

Nếu $a=3$ thì \(x=a-1=2\)

Nếu $a=-3$ thì $x=a-1=-4$

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Câu 2:

Đặt \(2x-1=a; x-1=b\). PT đã cho tương đương với:

\(a^3+b^3+(-a-b)^3=0\)

\(\Leftrightarrow a^3+b^3-(a+b)^3=0\)

\(\Leftrightarrow a^3+b^3-[a^3+b^3+3ab(a+b)]=0\)

\(\Leftrightarrow ab(a+b)=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ x-1=0\\ 3x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\\ x=\frac{2}{3}\end{matrix}\right.\)

5 tháng 3 2019

\(j,3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy...............................

5 tháng 3 2019

\(m,3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)

13 tháng 2 2020

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(-3t^2+9t+12=0\)

Ta có \(\Delta=9^2+4.3.12=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{-9+15}{-6}=-1\\t=\frac{-9-15}{-6}=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2=-1\left(L\right)\\x^2=4\end{cases}}\Rightarrow x=\pm2\)

Vậy x = 2 hoặc x =- 2

13 tháng 2 2020

\(-3x^4+9x^2+12=0\)\(\Leftrightarrow-3\left(x^4-3x^2-4\right)=0\)

\(\Leftrightarrow x^4-3x^2-4=0\)\(\Leftrightarrow\left(x^4+x^2\right)-\left(4x^2+4\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\)\(\Leftrightarrow\left(x^2+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-2;2\right\}\)

20 tháng 5 2020

\(x^3+6x^2+13x+10=0\)

Ta nhẩm đc nghiệm bằng -2

Ta lập lược đồ hóc-ne :

-2 1 6 13 10 1 4 5 0

vì số cuối cùng = 0 nên pt trên nhận -2 là nghệm !

Nên pt trên \(< =>\left(x+2\right)\left(x^2+4x+5\right)=0\)

\(< =>\orbr{\begin{cases}x=-2\\\Delta< 0=>vo-nghiem\end{cases}}\)

Vậy nghiệm của pt trên là -2

5 tháng 2 2018

3x4-13x3+16x2-13x+3=0

⇔(x-3)(3x3-4x2+4x-1)=0

⇔(x-3)(x-\(\dfrac {1}{3}\))(3x2-3x+3)=0

⇔3(x-3)(x-\(\dfrac{1}{3}\))(x2-x+1)=0

⇔x-3=0 hoặc x-1/3=0

⇔x=3 hoặc x=1/3