\(\sqrt{x}\) + \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))

NV
11 tháng 11 2019

a/ \(x\le8\)

\(\Leftrightarrow x^2+x+12=\left(8-x\right)^2\)

\(\Leftrightarrow x^2+x+12=x^2-16x+64\)

\(\Leftrightarrow17x=52\Rightarrow x=\frac{52}{17}\)

b/ \(x\le4\)

\(\Leftrightarrow x^2+3x-1=\left(4-x\right)^2\)

\(\Leftrightarrow x^2+3x-1=x^2-8x+16\)

\(\Leftrightarrow11x=17\Rightarrow x=\frac{17}{11}\)

c/ \(\left\{{}\begin{matrix}x^2-3x\ge0\\2x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge3\)

\(x^2-3x=2x-1\)

\(\Leftrightarrow x^2-5x+1=0\Rightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)

NV
11 tháng 11 2019

d/ \(2-x\ge0\Rightarrow x\le2\)

\(x^2+2x+4=2-x\)

\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

e/ \(2x^2-x\ge0\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge\frac{1}{2}\end{matrix}\right.\)

\(x^2+2x+4=2x^2-x\)

\(\Leftrightarrow x^2-3x-4=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

f/ \(x\ge2\)

\(2x-1=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=5\end{matrix}\right.\)

3 tháng 12 2017

a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)

\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)

\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)

pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)

\(\Leftrightarrow t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)

suy ra tìm đc x

3 tháng 12 2017

câu b đặt t =\(3x^2+5x+8\)

ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)

\(\Rightarrow t=16\)

\(\Leftrightarrow3x^2+5x+8=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)

10 tháng 1 2017

Mệt r` kiếm bài dễ dễ làm trc v mai tính sau

ĐK:...

\(\frac{x-7}{3}=\sqrt{5x-1}-\sqrt{3x+13}=\frac{2\left(x-7\right)}{\sqrt{5x-1}+\sqrt{3x+13}}\)

*)x=7

*)\(\sqrt{3x+13}+\sqrt{5x-1}=6\)=>...

10 tháng 1 2017

có thể giải kĩ ra không ạ ?

NV
22 tháng 11 2019

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

Ta được:

\(1+\frac{a^2-1}{3}=a\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x\left(1-x\right)}=0\\2\sqrt{x-x^2}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(1-x\right)=0\\-4x^2+4x-9=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b/ ĐKXĐ: ...

Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+a+x=0\)

\(\Leftrightarrow\left(a+x\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\left(x\le0\right)\\x+5=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
22 tháng 11 2019

c/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

b: ĐKXĐ: x>=-1

\(\sqrt{x+1}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+1\right)^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\cdot x=0\\x>=-1\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1\right\}\)

c: \(\sqrt{x-1}=1-x\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\1-x< =0\end{matrix}\right.\Leftrightarrow x=1\)

Do đó: x=1 là nghiệm của phương trình

d: \(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)(ĐKXĐ: x<>1)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)+4=x^2+3\)

\(\Leftrightarrow2x^2-2x+3x-3+4-x^2-3=0\)

\(\Leftrightarrow x^2+x-2=0\)

=>(x+2)(x-1)=0

=>x=-2(nhận) hoặc x=1(loại)

 

3 tháng 5 2017

a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.

3 tháng 5 2017

c) Đkxđ \(\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
d) Đkxđ: \(-x-1\ge0\Leftrightarrow-x\ge1\) \(\Leftrightarrow x\le-1\).
Pt\(\Leftrightarrow x^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy x = -2 là nghiệm của phương trình.