Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
đặt căn ((3x-1)/x)=a(ĐK: a>=0)
Theo đề, ta có: \(2a=\dfrac{1}{a^2}+1\)
\(\Leftrightarrow2a^3=1+a^2\)
\(\Leftrightarrow2a^3-a^2-1=0\)
=>a=1
=>3x-1/x=1
=>3x-1=x
=>2x=1
hay x=1/2
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
b. \(\sqrt{x-4}+\sqrt{x^2-3x+4}=x\)
(ĐKXĐ: \(x\ge4\))
\(\Leftrightarrow\sqrt{x^2-3x+4}=x-\sqrt{x-4}\)
\(\Leftrightarrow x^2-3x+4=x^2+x-4-2\sqrt{x\left(x-4\right)}\)
\(\Leftrightarrow x^2-3x+4-x^2-x+4+2\sqrt{x^2-4x}=0\Leftrightarrow-4x+8+2\sqrt{x^2-4x}=0\Leftrightarrow-2\left(2x-4-\sqrt{x^2-4x}\right)=0\Leftrightarrow2x-4-\sqrt{x^2-4x}=0\Leftrightarrow\sqrt{x^2-4x}=2x-4\Leftrightarrow x^2-4x=4x^2+16-16x\Leftrightarrow x^2-4x^2-4x+16x-16=0\Leftrightarrow-3x^2+12x-16=0\Leftrightarrow3x^2-12x+16=0\)
Ta có: \(\Delta=b^2-4ac=\left(-12\right)^2-4.3.16=-48< 0\)
=> pt vô nghiệm.
Vậy pt đã cho vô nghiệm.
ĐK : x > 3/2
Đặt \(\sqrt{3x-2}=a\left(a>0\right)\) . Khi đó pt thành :
\(1+\dfrac{x}{a}=\dfrac{1+a}{x}\Leftrightarrow\dfrac{a+x}{a}=\dfrac{a+1}{x}\Leftrightarrow a^2+a=ax+x^2\Leftrightarrow x^2+a\left(x-1\right)-a^2=0\)
hay \(\sqrt{3x-2}\left(x-1\right)+x^2-3x+2=0\Leftrightarrow\left(\sqrt{3x-2}-1\right)\left(x-1\right)+x^2-2x+1=0\Leftrightarrow\dfrac{3x-3}{\sqrt{3x-2}+1}\left(x-1\right)+\left(x-1\right)^2=0\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x-2}+1}+\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x-2}+1}+1\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)
Vì \(\dfrac{3}{\sqrt{3x-2}+1}+1>0\)
Vậy nghiệm của pt là x = 1
a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)
đk: x >/ 0
(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)
Kl: \(x=\dfrac{392}{169}\)
b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)
đk: x >/ 5
(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)
Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)
Kl: x=-6
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)
Đk: \(x\ge\dfrac{4}{5}\)
(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)
Kl: x=12
không tồn tại x nha
#Harry#Kasama#
\(\sqrt{\left(3x-2\right)\left(1-x\right)}=x^2\) dkxd:2/3=<x=<1
ta co:\(\sqrt{\left(3x-2\right)\left(1-x\right)}=< \frac{3x-2+1-x}{2}=\frac{2x-1}{2}\)
=>\(x^2=< \frac{2x-1}{2}\)
=>\(2x^2-2x+1=< 0\)
=>\(\left(x\sqrt{2}-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=< 0\)vo ly
=>\(x=\varnothing\)