Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(ĐKXĐ:x\ne2\)
\(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)
\(\Rightarrow1+3x-6=3-x\)
\(\Leftrightarrow1+3x-6-3+x=0\)
\(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\left(ktm\right)\)
vậy x thuộc tập hợp rỗng
b, \(ĐKXĐ:x\ne\pm1\)
\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x-1=0\Rightarrow x=1\left(ktm\right)\end{cases}}\)
vậy x = 0
c, \(ĐKXĐ:x\ne\pm\frac{1}{2}\)
\(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(2x+1\right)}\)
\(\Leftrightarrow\frac{32x^2}{12\left(1-2x\right)\left(2x+1\right)}=\frac{-8x\left(2x+1\right)}{12\left(1-2x\right)\left(2x+1\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(2x+1\right)}\)
\(\Rightarrow32x^2=-16x^2-8x-3+6x-24x+48x\)
\(\Leftrightarrow48x^2=22x-3\)
\(\Leftrightarrow48x^2-22x+3=0\)
a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)
\(ĐKXĐ:x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{24+20\left(x^2-1\right)-\left(8x-1\right)\left(x-1\right)-\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2-11x+1=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
ĐKXĐ: \(x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x-1\right)}+5=\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(1-x\right)}\)
\(\Leftrightarrow24\left(1-x\right)+20\left(x+1\right)\left(x-1\right)\left(1-x\right)=\left(8x-1\right)\left(x-1\right)\left(1-x\right)\)\(-\left(12x-1\right)\left(x+1\right)\left(1-x\right)\)
\(\Leftrightarrow4-4x+20x^2-20x^3=18x^2-20x^3+2x\)
\(\Leftrightarrow4-4x+20x^2=18x^2+2x\)
\(\Leftrightarrow4-4x+20x^2-18x^2-2x=0\)
\(ĐKXĐ:x\ne-3;x\ne2;x\ne-1;x\ne\frac{1}{2}\)
Xét\(VT=\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}\)
\(=\frac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(=\frac{5x+5-2x+4}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}\)
\(=\frac{3x+9}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}\)
\(pt\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{4x-2}\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=4x-2\)
\(\Leftrightarrow x^2-x-2=4x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)(tm)
Vậy tập nghiệm của phương trình là {0;5}
ĐKXĐ: \(x\ne-3,2,-1\)
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=\frac{3}{4x-2}\)
\(\Leftrightarrow\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{2\left(x-2\right)}\)
\(\Leftrightarrow10\left(x+1\right)\left(2x-1\right)-4\left(x-2\right)\left(2x-1\right)=3\left(x-2\right)\left(x+3\right)\left(x+1\right)\)
\(\Leftrightarrow12x^2+30x-18=3x^2+6x^2-15x-18\)
\(\Leftrightarrow12x^2+30x=3x^3+6x^2-15\)
\(\Leftrightarrow12x^2+30x-3x^3-6x^2+15x=0\)
\(\Leftrightarrow6x^2+45x-3x^2=0\)
\(\Leftrightarrow3x\left(2x+15-x^2\right)=0\)
\(\Leftrightarrow-x\left(x^2-2x-15\right)=0\)
\(\Leftrightarrow-x\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x=0\\x-5=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x=5\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy: tập nghiệm của phương trình là: S = {0, 5}
\(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{x-1}{x+1}-\frac{\left(x-1\right)\left(x+2\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{x-1-\left(x-1\right)\left(x+1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{-\left(x-1\right)\left(x+2-1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> -(x - 1) = \(\frac{x+1}{x-1}\) - x - 2
<=> 1 - x = \(\frac{x+1}{x-1}\) - x - 2
<=> 1 = \(\frac{x+1}{x-1}\) - x - 2
<=> x - 1 = x + 1 - 2(x - 1)
<=> x - 1 = -x + 3
<=> x = 3 - x - 1
<=> x = 2 - x
<=> x + x = 2
<=> 2x = 2
<=> x = 1
ĐK: x khác 1; - 1
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)
<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)
<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)
<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)
<=> \(2x=4\)
<=> x = 2 thỏa mãn.
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
\(\frac{4x+2}{2}=\frac{4x+6}{-5}\Leftrightarrow-5.\left(4x+2\right)=2.\left(4x+6\right)\Leftrightarrow-20x-10=8x+12\)
\(\Leftrightarrow-20x-8x=12+10\Leftrightarrow-28x=22\Leftrightarrow x=\frac{-22}{28}=\frac{-11}{14}\)