K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề; \(x^2+x+\dfrac{1}{4}=\dfrac{9}{4}\)

=>\(x^2+x+\dfrac{1}{4}-\dfrac{9}{4}=0\)

=>\(x^2+x-2=0\)

=>(x+2)(x-1)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

b: \(25x^2-16\left(x+2\right)^2=0\)

=>\(\left(5x\right)^2-\left(4x+8\right)^2=0\)

=>\(\left(5x-4x-8\right)\left(5x+4x+8\right)=0\)

=>(x-8)(9x+8)=0

=>\(\left[{}\begin{matrix}x-8=0\\9x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{8}{9}\end{matrix}\right.\)

12 tháng 8 2024

Cíuuuuuu tớ;))))

a/

=> 25x2 = 9

=> (5x)= 32

=> 5x = 3 

=> x = 3/5

b/ 

=> x+ 8x + 16 - x2 - 1 = 16

=> 8x + 15 = 16

=> 8x = 1

=> x = 1/8

28 tháng 2 2018

b. sửa đề

\(6x^4+25x^3+12x-25x^2+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy........

28 tháng 2 2018

Bài 1 : Giải phương trình

a) (x + 3)4 + (x + 5)4 = 16

Đặt : x + 3 = t

=> x + 5 = x + 3 + 2 = t + 2

Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :

t4 + (t + 2)4 = 16

<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16

<=> 2(t4 + 4t3 + 12t2 + 16t) = 0

<=> t4 + 4t3 + 12t2 + 16t = 0

<=> (t + 2) . t . (t2 + 2y + 4) = 0

TH1 : t = 0

TH2 : t + 2 = 0 <=> t = -2

TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)

Nên t = 0 hoặc t = -2

hay x + 3 = -2 hoặc x + 3 = 0

<=> x = -5 hoặc x = -3

\(S=\left\{-5;-3\right\}\)

b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0

<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0

<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0

<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0

<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0

\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)

<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0

<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0

TH1 : x + 2 = 0 <=> x = -2

TH2 : x + 3 = 0 <=> x = -3

TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)

TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)

\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)

1 tháng 7 2018

a/ \(25x^2-9=0\)

<=> \(\left(5x-3\right)\left(5x+3\right)=0\)

<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

<=> \(x^2+8x+16-x^2+8x-9=16\)

<=> \(16x+7=16\)

<=> \(16x=9\)

<=> \(x=\frac{9}{16}\)

1 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)

Vậy S = {3/5 ; -3/5}

b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)

\(\Leftrightarrow9=0\left(vl\right)\)

Vậy S = \(\varnothing\)

15 tháng 7 2018

a) \(4.\left(x-1\right)^2-9=0\)

\(\Rightarrow4.\left(x-1\right)^2=9\)

\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)

\(\Rightarrow x-1=\pm\dfrac{3}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)

\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)

\(\Rightarrow x-1=\pm\dfrac{1}{6}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)

15 tháng 7 2018

e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)

\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)

\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)

\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

1 tháng 7 2018

- Giúp mình với :v

a: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)

b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

=>x+1=0

hay x=-1

c: \(x^2\left(x^2+2\right)-x^2-2=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)

=>x=1 hoặc x=-1

6 tháng 8 2018

Bạn viết đề kiểu gì thế?

a: =>\(x^3+8-x^3-2x=15\)

=>2x=-7

hay x=-7/2

c: =>(5x-3)(5x+3)=0

=>x=3/5 hoặc x=-3/5

d: =>\(x^2+8x+16-x^2+1=16\)

=>8x+1=0

hay x=-1/8

30 tháng 6 2017

toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!

30 tháng 6 2017

a, x2-6x +9 = (x-3)2

b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2

c, 9x2 -12x +4 = (3x-2)2

d, 25x2 -10x +1= (5x -1)2

e, x4-4x2+4 = (x2 -2)2

f, x2 +8x +16 = (x+4)2

a) Ta có: \(x^2-16=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

Vậy: S={4;-4}

b) Ta có: \(x^3-25x=0\)

\(\Leftrightarrow x\left(x^2-25\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

Vậy: S={0;5;-5}

c) Ta có: \(x^2+4x=-4\)

\(\Leftrightarrow x^2+4x+4=0\)

\(\Leftrightarrow\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\)

hay x=-2

Vậy: S={-2}

d) Ta có: \(x^3+2x=0\)

\(\Leftrightarrow x\left(x^2+2\right)=0\)

\(x^2+2>0\forall x\)

nên x=0

Vậy: S={0}

23 tháng 8 2020

uhm uhm mk cx 2k7