\(x^3-3x^2+4x+11=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1

Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)

<=>  \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

<=>    \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

<=>  \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)

Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm

5 tháng 10 2016

Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)

Vậy pt có 1 nghiệm x= 1.

Ta giải pt bậc ba theo công thức Cardano:

\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)

Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)

\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)

Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)

Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)

Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.

Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.

\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)

Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

19 tháng 9 2016

\(3x^4+4x^3-3x^2-2x+1=0\)

\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)

\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)

  • \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)

\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)

  • \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)

\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)

22 tháng 6 2017

Ta có: 

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)

Ta lại có:

\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1) và (2) dấu = xảy ra khi \(x=-1\)

7 tháng 8 2015

Delta .........

Viet........

\(t_1=\frac{x_1}{x_2};\text{ }t_2=\frac{x_2}{x_1}\)

\(t_1+t_2=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(-p\right)^2-2q}{q}\)

\(t_1.t_2=1\)

Do đó t1; t2 là 2 nghiệm của pt \(t^2-\frac{p^2-2q}{q}t+1=0\)

19 tháng 3 2022

a, \(\Delta=25-8=17\)>0 Vậy pt có 2 nghiệm pb 

\(x=\dfrac{5\pm\sqrt{17}}{4}\)

b, \(\Delta=16-16=0\)Vậy pt có nghiệm kép 

\(x_1=x_2=\dfrac{1}{4}\)

c, \(\Delta=1-4.2.5< 0\)Vậy pt vô nghiệm 

d, \(\Delta=4+4.24=100>0\)Vậy pt có 2 nghiệm pb 

\(x=\dfrac{-2-10}{-6}=2;x=\dfrac{-2+10}{-6}=-\dfrac{4}{3}\)

13 tháng 5 2019

Đặt:

\(\hept{\begin{cases}u=\sqrt[3]{2x-1}\\v=\sqrt[3]{3x-2}\end{cases}}\)   Thì ta có hệ phương trình:  \(\hept{\begin{cases}2u-v=1\\3u^3-2v^3=1\end{cases}\Leftrightarrow\hept{\begin{cases}v=2u-1\\3u^3-2\left(2u-1\right)^3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}v=2u-1\\3u^3-2\left(8u^3-12u^2+6u-1\right)=1\end{cases}.}}\) 

\(\hept{\begin{cases}v=2u-1\\13u^3-24u^2+12u-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}v=2u-1\\13u^2\left(u-1\right)-11u\left(u-1\right)+\left(u-1\right)=0\end{cases}\Leftrightarrow}}\) 

\(\Leftrightarrow\hept{\begin{cases}v=2u-1\\\left(u-1\right)\left(13u^2-11u+1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}u_1=1\\u_2=\frac{11-\sqrt{69}}{26}\\u_3=\frac{11+\sqrt{69}}{26}\end{cases}.}}\)   Không cần phải tính v , ta tìm được các nghiệm của phương trình:

- Với u = 1 :   \(\sqrt[3]{2x-1}=1\Leftrightarrow2x-1=1\Leftrightarrow2x=2\Leftrightarrow x=1.\) 

- Với u2 :  \(u_2=\frac{11-\sqrt{69}}{26}\Rightarrow\sqrt[3]{2x-1}=u_2\Leftrightarrow2x-1=u_2^3\Leftrightarrow x=\frac{u_2^3+1}{2}.\)   Viết u2 cho gọn 

- Với u3 :    \(u_3=\frac{11+\sqrt{69}}{26}\Rightarrow\sqrt[3]{2x-1}=u_3\Leftrightarrow2x-1=u_3^3\Leftrightarrow x=\frac{u_3^3+1}{2}.\)  Viết u3 cho gọn

Trả lời: Phương trình có 3 nghiệm (Đã nêu trên)

24 tháng 9 2017

1) \(\sqrt{x^2+9x-1}+x\sqrt{11-3x}=2x+3\)

\(\Leftrightarrow\sqrt{x^2+9x-1}+x\sqrt{11-3x}=23+x\)

\(\Rightarrow x=5\)

Vì mình giải bằng máy casio nên không thể giải đầy đủ, nhưng kết quả đó đúng đấy

24 tháng 9 2017

2) \(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=1-\frac{1}{2}\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=\frac{1}{2}\)

\(\Rightarrow x=5\)

Phương trình có nghiệm là 5.

Ps: Giải bằng máy casio fx-570VN PLUS , sai thì thôi nhé!

23 tháng 8 2019

\(\hept{\begin{cases}2x-y=4\\x+y=4\end{cases}\Rightarrow}\hept{\begin{cases}3x=8\\x+y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{8}{3}\\y=\frac{4}{3}\end{cases}}\)

\(\hept{\begin{cases}x-y=1\\x+y=3\end{cases}\Rightarrow}\hept{\begin{cases}2x=4\\x+y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=1\end{cases}}\)

TL

XY=60

Học tốt

Sai mik sorry

12 tháng 11 2021

xem có sai đề ko