\(\sqrt{x^2+x+2}=\dfrac{x^2+5x+2}{2x+2}\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ne-1\)

\(x^2+5x+2=\left(2x+2\right)\sqrt{x^2+x+2}\)

\(\Leftrightarrow\left(x^2+x+2\right)-2\left(x+1\right)\sqrt{x^2+x+2}+4x=0\)

Đặt \(\sqrt{x^2+x+2}=t>0\)

\(\Rightarrow t^2-2\left(x+1\right)t+4x=0\)

\(\Leftrightarrow t\left(t-2x\right)-2\left(t-2x\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\\\sqrt{x^2+x+2}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\\x^2+x+2=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\end{matrix}\right.\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-5x+14-4\sqrt{x+1}=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x+1-4\sqrt{x+1}+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

NV
1 tháng 2 2019

1/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}.\sqrt[4]{1+8x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}-1}{x}\)

Liên hợp dài quá ko muốn gõ tiếp, bạn tự đặt nhân tử chung rồi liên hợp nhé, kết quả ra 5

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-2-\left(x^3-3x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{7\left(x-1\right)}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)^2\left(x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{7}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)\left(x+2\right)=\dfrac{7}{12}\)

3/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1+\dfrac{1}{x^2}}{2+\dfrac{3}{x}-\dfrac{1}{x^2}}=-\infty\)

4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{\sqrt[6]{x}}+\dfrac{1}{\sqrt[4]{x}}}{\sqrt{4+\dfrac{1}{x}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}\)

5/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{1+\dfrac{2}{x^2}}}{\sqrt[3]{8+\dfrac{1}{x}+\dfrac{1}{x^3}}}=\dfrac{1-1}{\sqrt[3]{8}}=0\)

6/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4+\dfrac{3}{x}-\dfrac{7}{x^2}}}{\sqrt[3]{27+\dfrac{5}{x}+\dfrac{1}{x^2}-\dfrac{4}{x^3}}}=\dfrac{-\sqrt{4}}{\sqrt[3]{27}}=\dfrac{-2}{3}\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

27 tháng 9 2018

3.3 d)

\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)

27 tháng 9 2018

3.4 a)

\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)

Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)

Ta được:

\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)

Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)\(sin\alpha=\dfrac{2}{\sqrt{5}}\)

Phương trình tương đương:

\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

9 tháng 4 2018

\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+\dfrac{x^{10}}{10}=U+V+T\)

\(\left\{{}\begin{matrix}U^2=x;\\V^2=\dfrac{1}{x}\\Y'=U'+V'+T'\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)

\(\left(1\right)\Leftrightarrow U'=\dfrac{1}{2U}=\dfrac{1}{2\sqrt{x}}\)

(2) \(\Leftrightarrow V'=\dfrac{-1}{x^2.2V}=\dfrac{-1}{2x^2.\dfrac{1}{\sqrt{x}}}=\dfrac{-1}{2.\sqrt[3]{x^2}}\)

\(\left(3\right)\Leftrightarrow Y'=\dfrac{1}{2\sqrt{x}}-\dfrac{1}{2\sqrt[3]{x^2}}+x^9\)

NV
30 tháng 8 2020

3.

\(\Leftrightarrow\left(4cos^2x-4\sqrt{3}cosx+3\right)+\left(3tan^2x+2\sqrt{3}tanx+1\right)=0\)

\(\Leftrightarrow\left(2cosx-\sqrt{3}\right)^2+\left(\sqrt{3}tanx+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2cosx-\sqrt{3}=0\\\sqrt{3}tanx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx=\frac{\sqrt{3}}{2}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+l\pi\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{6}+k2\pi\)

NV
30 tháng 8 2020

2.

Do \(-1\le cosx;sinx\le1\Rightarrow\left\{{}\begin{matrix}sin^5x\le sin^2x\\cos^5x\le cos^2x\end{matrix}\right.\)

\(\Rightarrow sin^5x+cos^5x\le sin^2x+cos^2x=1\)

Lại có: \(sin2x+cos2x=\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\le\sqrt{2}\)

\(\Rightarrow sin^5x+cos^5x+sin2x+cos2x\le1+\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=1\\sin2x+cos2x=\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=1\\sin2x+cos2x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=1\\-1=\sqrt{2}\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=1\\2cos^2x-1=\sqrt{2}\left(vn\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

9 tháng 4 2017

a) y' = 2x - = 2x - .

b) y' = = .

c) y' = = = = .

d) y' = = = = .