\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)

6 tháng 9 2019

a) x=49

b) x=4

c) x = 2 hoặc x = -2

d) x= 11,17355372

e) x =10

f) x=2

g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)

h) x =4

k) x = 4/3 hoặc x = -2/3

l) x = 2,5

m) x = 0,5

n) x=-0,5

6 tháng 9 2019

lưu ý: n) nếu theo đề bd thì: x= -1,5 hoặc x=2,5

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)

Vậy..........

b) ĐK: $x\geq 0$

PT $\Leftrightarrow (\sqrt{x}-3)^2=0$

$\Leftrightarrow \sqrt{x}-3=0$

$\Leftrightarrow x=9$ (thỏa mãn)

c) ĐK: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$

$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$

$\Leftrightarrow 3\sqrt{x-3}=7$

$\Leftrightarrow x-3=(\frac{7}{3})^2$

$\Rightarrow x=\frac{76}{9}$

d)

ĐK: $x\geq \frac{-1}{2}$

PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$

$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$

$\Leftrightarrow 3\sqrt{2x+1}=6$

$\Leftrightarrow \sqrt{2x+1}=2$

$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)

23 tháng 10 2020

cảm ơn nha <3

19 tháng 8 2016

a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)

b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=> 3 = 0 (vô lý)

=> pt vô nghiệm.

 

19 tháng 8 2016

c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)

d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))

\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)

Vậy pt vô nghiệm.

20 tháng 10 2018

a,

\(\sqrt{1-4x+4x^2}=5\\ \sqrt{\left(2x-1\right)^2}=5\\ \left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

20 tháng 10 2018

b,

\(\sqrt{4-5x}=12\\ 4-5x=144\\ x=-28\)

23 tháng 8 2021

a, ĐK :a >= 3

\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)

\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)

b, \(ĐK:x\ge-\frac{1}{2}\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow x=4\left(tm\right)\)

23 tháng 8 2021

a) đk: \(a\ge3\)

pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)

\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)

\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)

11 tháng 8 2016

a) ĐKXĐ : \(x\ge0\)

Ta có : \(\sqrt{3x}-\sqrt{27}+\sqrt{75x}=3\Leftrightarrow\sqrt{x}\left(\sqrt{3}+\sqrt{75}\right)=3+\sqrt{27}\)

\(\Leftrightarrow\sqrt{x}=\frac{3+\sqrt{27}}{\sqrt{3}+\sqrt{75}}=\frac{\sqrt{3}+3}{6}\)

\(\Leftrightarrow x=\frac{\left(3+\sqrt{3}\right)^2}{36}\)

b) ĐKXĐ : \(x\ge1\)

\(\sqrt{x-1}-\sqrt{4x-4}+\sqrt{9x-9}=10\)

\(\Leftrightarrow\sqrt{x-1}-\sqrt{4.\left(x-1\right)}+\sqrt{9.\left(x-1\right)}=10\)

\(\Leftrightarrow\sqrt{x-1}-2\sqrt{x-1}+3\sqrt{x-1}=10\)

\(\Leftrightarrow\sqrt{x-1}=5\Leftrightarrow x=26\) (TMĐK)

c) ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{2x+1}+\sqrt{18x+9}-\sqrt{50x+25}=-3\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{9\left(2x+1\right)}-\sqrt{25\left(2x+1\right)}=-3\)

\(\Leftrightarrow\sqrt{2x+1}+3\sqrt{2x+1}-5\sqrt{2x+1}=-3\)

\(\Leftrightarrow0=-3\) (Vô lí - loại)

Vậy pt vô nghiệm.

 

11 tháng 8 2016

\(\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=25\) (bình phương 2 vế)

\(\Leftrightarrow x=26\)

2 tháng 9 2019

a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)

⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81

⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0

⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0

⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0

⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0

⇔ 7x2 - 4x - 96 = 0

x1 = 4 ( nhận )

x2 = \(\frac{-24}{7}\) ( nhận )

Vậy: S = {4; \(\frac{-24}{7}\)}

10 tháng 7 2015

\(a,\sqrt{25x^2}=10\)

\(\sqrt{\left(5x\right)^2}=10\)

\(5x=10\)

\(x=2\)

 

1 tháng 4 2016

b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\)     ĐKXĐ: x>=1,x>=-1

<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

<=>x=+-4

14 tháng 11 2018

a)\(2\sqrt{3}-\sqrt{4+x^2}=0\)

\(\Leftrightarrow\sqrt{12}-\sqrt{4+x^2}=0\)

\(\Leftrightarrow\sqrt{4+x^2}=\sqrt{12}\)

\(\Leftrightarrow4+x^2=12\Leftrightarrow x^2=8\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)

vậy ....

b)\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\) điều kiện xác định x\(\ge0\)

\(\Leftrightarrow3\sqrt{2x}+5\sqrt{4}\sqrt{2x}-\sqrt{9}\sqrt{2x}=20\)

\(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}=20\)

\(\Leftrightarrow10\sqrt{2x}=20\Leftrightarrow\sqrt{2x}=2\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\) (tm)

Vậy ....

c)\(\sqrt{4\left(x+2\right)^2}=8\Leftrightarrow4\left(x+2\right)^2=64\)

\(\Leftrightarrow\left(x+2\right)^2=16\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

Vậy ...

14 tháng 11 2018

a) pt <=> \(\sqrt{4+x^2}=2\sqrt{3}\)

<=> x2 + 4 = 12

<=> x2 = 8

<=> x = \(\pm2\sqrt{2}\)

b) ĐKXĐ: x ≥ 0

pt <=> \(3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}=20\)

<=> \(10\sqrt{2x}\) = 20

<=> \(\sqrt{2x}=2\)

<=> x = 2 (TM)

c) pt <=> 2|x + 2| = 8

<=> |x + 2| = 4

<=> \(\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

d) ĐKXĐ: x ≥ 2

pt <=> \(\sqrt{x-2}=3\sqrt{x^2-4}\)

<=> 9x2 - 12 = x - 2

<=> 9x2 - x - 10 = 0

<=> 9(x + 1)(x - \(\dfrac{10}{9}\)) = 0

<=> \(\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{9}\end{matrix}\right.\)(KTM)

e) pt <=> 4x + 1 = -7

<=> 4x = -8

<=> x = -2