\(\dfrac{10-x}{100}+\dfrac{20-x}{110}+\dfrac{30-x}{120}=3\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

-90

27 tháng 1 2018

\(\dfrac{10-x}{100}\) + \(\dfrac{20-x}{110}\)+\(\dfrac{30-x}{120}\)=3

<=> \(\dfrac{10-x}{100}\)-1+\(\dfrac{20-x}{110}\)-1+\(\dfrac{30-x}{120}\)-1 = 0

<=> \(\dfrac{-x-90}{100}\)+\(\dfrac{-x-90}{110}\)+\(\dfrac{-x-90}{120}\)=0

<=> (-x-90) ( \(\dfrac{1}{100}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{120}\))=0

<=> (-x-90) = 0 ( do 1/100 +1/110+1/120 khác 0)

<=> -x-90 = 0

<=> -x = 90

<=> x =-90

Vậy nghiệm của pt là x=-90

NV
26 tháng 11 2018

\(\dfrac{1.2}{1^2}.\dfrac{2.3}{2^2}.\dfrac{3.4}{3^2}...\dfrac{9.10}{9^2}.\dfrac{10.11}{10^2}\left(x-2\right)=-20\left(x+1\right)+60\)

\(\Leftrightarrow\dfrac{1.2^2.3^2.4^2...10^2.11}{1^2.2^2.3^2....10^2}\left(x-2\right)+20\left(x+1\right)=60\)

\(\Leftrightarrow11\left(x-2\right)+20\left(x+1\right)=60\)

\(\Leftrightarrow31x=62\)

\(\Rightarrow x=2\)

NV
11 tháng 1 2019

\(\dfrac{1.2}{1.1}.\dfrac{2.3}{2.2}.\dfrac{3.4}{3.3}.\dfrac{4.5}{4.4}...\dfrac{10.11}{10.10}\left(x-2\right)=-20x+40\)

\(\Leftrightarrow\dfrac{2.3.4...11}{1.2.3...10}\left(x-2\right)=-20x+40\)

\(\Leftrightarrow11\left(x-2\right)=-20x+40\)

\(\Leftrightarrow11x-22=-20x+40\)

\(\Leftrightarrow31x=62\)

\(\Rightarrow x=2\)

14 tháng 1 2019

\(=>\dfrac{2\cdot1}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\dfrac{3\cdot4}{3\cdot3}\cdot......\cdot\dfrac{10\cdot11}{10\cdot10}\cdot\left(x-2\right)=-20\left(x+1\right)+60\)=>11*(x-2)=-20*(x+1)+60

=>11x-22=-20x-20+60

=>31x=62

=>x=2

a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

=>(x+4)(x+7)=54

=>x^2+11x+28-54=0

=>(x+13)(x-2)=0

=>x=-13 hoặc x=2

b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)

=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)

=>x^2+6x+5=12

=>x^2+6x-7=0

=>(x+7)(x-1)=0

=>x=-7 hoặc x=1

a: \(\Leftrightarrow\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=\dfrac{-x}{2\left(x-3\right)}\)

\(\Leftrightarrow x\left(x-3\right)-4x=-x\left(x+1\right)\)

\(\Leftrightarrow x^2-3x-4x+x^2+x=0\)

\(\Leftrightarrow2x^2-6x=0\)

=>2x(x-3)=0

=>x=0(nhận) hoặc x=3(loại)

b: \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\text{Δ}=11^2-4\cdot1\cdot\left(-26\right)=121+104=225>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-11-15}{2}=\dfrac{-26}{2}=-13\\x_2=\dfrac{-11+15}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)

2 tháng 3 2018

\(\text{a) }\left|2-5x\right|=\left|3x+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}2-5x=3x+1\\2-5x=-3x-1\end{matrix}\right. \Leftrightarrow\left[{}\begin{matrix}-5x-3x=1-2\\-5x+3x=-1-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-1\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{8}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{\dfrac{1}{8};\dfrac{3}{2}\right\}\)

\(\text{b) }\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)

ĐXKĐ của phương trình \(:x\ne\pm5\)

\(\text{Ta có }:\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{2\left(25-x^2\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}-\dfrac{15}{2\left(x+5\right)\left(x-5\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{9\left(x+5\right)}{12\left(x+5\right)\left(x-5\right)}-\dfrac{90}{12\left(x+5\right)\left(x-5\right)}+\dfrac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}=0\\ \Rightarrow9x+45-90+14x-70=0\\ \Leftrightarrow23x=115\\ \Leftrightarrow x=5\left(KTM\right)\)

Vậy phương trình vô nghiệm

\(\text{c) }\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\\ \Leftrightarrow\left(\dfrac{x+29}{31}+1\right)-\left(\dfrac{x+27}{33}+1\right)=\left(\dfrac{x+17}{43}+1\right)-\left(\dfrac{x+15}{45}+1\right)\\ \Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}-\dfrac{x+60}{43}+\dfrac{x+60}{45}=0\\ \Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\\ \Leftrightarrow x+60=0\left(\text{Vì }\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\right)\\ \Leftrightarrow x=-60\)

Vậy \(x=-60\) là nghiệm của phương trình

22 tháng 4 2017

Giải bài 25 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8

8 tháng 2 2019

DƯƠNG PHAN KHÁNH DƯƠNG @Mysterious Person

10 tháng 2 2019

Y

22 tháng 2 2019

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)

\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)

Vậy tập nghiệm của pt là \(S=\varnothing\)

b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

\(\Leftrightarrow x-357=0\Leftrightarrow x=357\) 

Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)

15 tháng 2 2018

a) điều kiện xác định : \(x\ne0\)

ta có : \(A=\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow A=\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow A=\dfrac{x^3-x^2+x+x^2-x+1-\left(x^3+x^2+x-x^2-x-1\right)}{x^4-x^3+x^2+x^3-x^2+x+x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\) \(\Leftrightarrow A=\dfrac{x^3-x^2+x+x^2-x+1-x^3-x^2-x+x^2+x+1}{x^4+x^2+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\) \(\Leftrightarrow A=\dfrac{2}{x^4+x^2+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\Leftrightarrow\left(x^4+x^2+1\right)A=2=\dfrac{3}{x}\) \(\Leftrightarrow2x=3\Leftrightarrow x=\dfrac{3}{2}\left(tmđk\right)\) vậy \(x=\dfrac{3}{2}\)
15 tháng 2 2018

b) điều kiện : \(x\notin\left\{-4;-5;-6;-7\right\}\)

\(B=\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow B=\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow B=\dfrac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow B=\dfrac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow B=\dfrac{3x^2+33x+90}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\) \(\Leftrightarrow B=\dfrac{3\left(x+5\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\) \(\Leftrightarrow B=\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\) \(\Leftrightarrow54=\left(x+4\right)\left(x+7\right)\)

\(\Leftrightarrow54=x^2+11x+28\Leftrightarrow x^2+11x+28-54=0\)

\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2;x=-13\)