\(\frac{1}{x^2+9x+20}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Đặt

6x+7 = 7 , ta có

\(\left(t+1\right)\left(t-1\right)t^2=72\Rightarrow\left(t^2-1\right)t^2=72\)

\(\Rightarrow t^4-t^2-72=0\)

Lại đặt \(t^2=a\) (a \(\ge0\) )

\(\Rightarrow a^2-a-72=0\Rightarrow\left(a+8\right)\left(a-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-8\left(ktm\right)\\a=9\left(tm\right)\end{matrix}\right.\)

a = 9 => \(\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\)

Với t = 3

=> 6x + 7 =3

=> 6x = -4

=> x= \(-\frac{2}{3}\)

Với t = -3

=> 6x + 7 = -3

=> 6x = -10

=> x = \(-\frac{5}{3}\)

Vậy.....

b)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x-4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\Rightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+7\right)\left(x+4\right)}=\frac{1}{18}\Rightarrow x^2+11x+28-54=0\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

17 tháng 3 2019

a) Ta có:

(6x+8)(6x+6)(6x+7)2 = 72

Đặt \(6x+7=a\)

\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)

\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)

Đễ thấy \(a^2+8>0\)

\(\Rightarrow a^2-9=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

b)

Violympic toán 8

NV
10 tháng 3 2019

a/ Đặt \(6x+7=a\Rightarrow\left\{{}\begin{matrix}6x+8=a+1\\6x+6=a-1\end{matrix}\right.\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)a^2-72=0\)

\(\Leftrightarrow\left(a^2-1\right)a^2-72=0\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)

\(\Leftrightarrow a^2=9\) (do \(a^2+8>0\))

\(\Rightarrow\left[{}\begin{matrix}a=3\\a=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne-4;-5;-6;-7\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x-26=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

16 tháng 4 2017

mình sẽ giải câu 3 cho bạn nhé

đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)

\(\left(x+13\right)\left(x-2\right)=0\)

\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)

nhớ thank mk nhé

16 tháng 4 2017

câu 5 nà

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)

<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)

=> điều phải chứng minh

27 tháng 11 2018

1/ Ta có

 \(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)

Tương tự

\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)

\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)

Đk: x khác 4, 5, 6, 7

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé

27 tháng 11 2018

em cần đoạn tiếp mak

24 tháng 4 2019

\(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)

24 tháng 4 2019

ĐKXĐ: x khác -4;-5;-6;-7

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow3.18=x^2+11x+28\)

\(\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right).\left(x+13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}\left(tm\right)}\)

Vậy...

21 tháng 4 2017

a) Ta có: \(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=3\end{cases}}\)

Vậy nghiệm của phương trình là {1;2;3}

Mình đang bận. Câu 2 tí nữa giải quyết sau...

21 tháng 4 2017

nhầm a) \(\frac{10}{x-2}\)\(\frac{x^2-16}{\left(x-2\right)\left(x+1\right)}\)\(\frac{5}{x+1}\)

5 tháng 6 2017

phân tích mẫu thành nhân tử r áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) sau đó rút gọn quy đồng

5 tháng 6 2017

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\) \(\left(ĐKXĐ:x\ne0;x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)

\(\Leftrightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x^2+13x+42\right)+\left(x^2+11x+28\right)+\left(x^2+9x+20\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3x^2+33x+90}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3\left(x^2+11x+30\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=18.3\left(x^2+11x+30\right)\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=54\left(x+5\right)\left(x+6\right)\)

\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28-54=0\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow x^2+13x-2x-26=0\)

\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\)

\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+13=0\\x-2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x=-13\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)

13 tháng 2 2020

\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)

\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)

Vậy tập nghiệm S =  {2;-13}

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)