Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2}=\dfrac{-2}{-x}\)
\(\Rightarrow x.\left(-x\right)=2.\left(-2\right)\)
\(\Rightarrow-x^2=-4\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x=-2\) hoặc \(x=2\)
Ta có: 1/3 + −2/5+ 1/6 + −1/5 ≤ x < −3/4+2/7+-1/4+3/5+5/7
⇒10-12+5-6/30≤ x< -105+40-35+84+100/140
⇒-3/30≤ x <84/140
⇒-0,1≤ x < 0,6
⇒x=0
\(\frac{x-1}{9}=\frac{8}{3}\Rightarrow\)\(\frac{x-1}{9}=\frac{24}{9}\Rightarrow x-1=24\)
x=24+1
x=25
Vậy x=25
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow\left(x-1\right):9=\frac{8}{3}\)
\(\Leftrightarrow\left(x-1\right)=24\)
\(\Leftrightarrow x=24+1\)
\(\Leftrightarrow x=25\)
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
x=\(\dfrac{-4.\left(-10\right)}{8}=5\).
y=\(\dfrac{-10.\left(-7\right)}{5}=14.\)
z=\(\dfrac{-7.\left(-24\right)}{14}=12.\)
x+y=16 => x=16-y
thay vào đẳng thức đã cho, ta được:
\(\dfrac{3+16-y}{5+y}=\dfrac{3}{5}\Leftrightarrow\dfrac{19-y}{5+y}=\dfrac{3}{5}\\ \Leftrightarrow\left(19-y\right).5=3.\left(5+y\right)\\ \Leftrightarrow y=10\)
=> x = 6
vậy cặp số x,y cần tìm là 6;10
a) ta có
1 = 1+0
Ta có bảng sau:
x-1 | 1 | 0 |
y-2 | 0 |
1 |
x | 2 | 1 |
y | 2 |
3 |
Vậy x=2 , y=2
x=1 , y=3
b) Ta có : 0=0+0
ta có bảng sau:
x+3 | 0 |
y | 0 |
x | -3 |
Vậy y=0 , x=-3
Ta có: \(\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\)
\(\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\)
\(\dfrac{z}{z+x}>\dfrac{z}{x+y+z}\)
Cộng vế với vế lại ta được:
\(A>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow A>1\) (1)
Lại có: \(\dfrac{x}{x+y}< \dfrac{x+y}{x+y+z}\)
\(\dfrac{y}{y+z}< \dfrac{y+z}{x+y+z}\)
\(\dfrac{z}{z+x}< \dfrac{z+x}{x+y+z}\)
Cộng vế với vế lại ta được:
\(A< \dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}+\dfrac{z+x}{x+y+z}=\dfrac{x+y+y+z+z+x}{x+y+z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow A< 2\) (2)
Từ (1) và (2) => 1 < A < 2
Vậy A không phải số nguyên (dpcm)
Để A nguyên thì \(2024⋮x-2\)
=>\(x-2\in\){1;-1;2;-2;4;-4;8;-8;11;-11;22;-22;23;-23;44;-44;46;-46;88;-88;92;-92;184;-184;253;-253;506;-506;1012;-1012;2024;-2024}
=>x\(\in\){3;1;4;0;6;-2;10;-6;13;-9;24;-20;25;-21;46;-42;48;-44;90;-86;94;-90;186;-182;255;-251;508;-504;1014;-1010;2026;-2022}