Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)ĐKXĐ : \(x\ne2;\ne-3\)
\(\Leftrightarrow\frac{x^2-9}{\left(x-2\right)\left(x+3\right)}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow x^2-9=5\)
\(\Leftrightarrow x^2=14\)
\(x=\sqrt{14}\)
.....
a) \(\left(x+3\right)^2-\left(x-3\right)^2=6x\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=6x\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=6x\Leftrightarrow12x=6x\)\(\Leftrightarrow12x-6x=0\Leftrightarrow6x=0\Leftrightarrow x=0\)
Vậy phương trình có tập nghiệm S = { 0 }
b)\(-ĐKXĐ:\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x+3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-3\end{cases}}\)
- Ta có : \(\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\Leftrightarrow\frac{x-3}{x-2}-\frac{5}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-5}{\left(x-2\right)\left(x+3\right)}=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(thoaman\right)\\x=-3\left(kothoaman\right)\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 }
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)
\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)
f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\left(x^2-2\right)\)
\(=x^2+1-x^2+2\)
\(=3\)
a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(3x^2+10x-8=5x^2-2x+10\)
\(3x^2-5x^2+10x+2x-8-10=0\)
\(-2x^2+12x-18=0\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(\frac{x^2-x-6}{x-3}=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
Lời giải:
a) $(x+3)^2-(x-3)^2=6x+18$
$\Leftrightarrow 12x=6x+18\Leftrightarrow 6x=18\Rightarrow x=3$
b) ĐK:$x\neq 2; x\neq 3$
PT $\Rightarrow x+3=\frac{5}{3-x}$
$\Rightarrow (x+3)(3-x)=5$
$\Rightarrow 9-x^2=5$
$\Rightarrow x^2=4\Rightarrow x=\pm 2$. Kết hợp với ĐKXĐ suy ra $x=-2$
c) ĐKXĐ: $x\neq \frac{\pm 3}{4}$
PT $\Leftrightarrow \frac{12x^2+30x-21}{(4x-3)(4x+3)}-\frac{(3x-7)(3x+4)}{(4x-3)(4x+3)}=\frac{(6x+5)(4x-3)}{(4x-3)(4x+3)}$
$\Rightarrow 12x^2+30x-21-(3x-7)(4x+3)=(6x+5)(4x-3)$
$\Leftrightarrow -24x^2+47x+15=0$
$\Rightarrow x=\frac{47\pm \sqrt{3649}}{48}$
d)
ĐK: $x\neq -1; x\neq 2$
PT $\Leftrightarrow \frac{4(x-2)}{(x+1)(x-2)}-\frac{2(x+1)}{(x-2)(x+1)}=\frac{x+3}{(x+1)(x-2)}$
$\Rightarrow 4(x-2)-2(x+1)=x+3$
$\Rightarrow x=13$ (t.m)