Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\Leftrightarrow\frac{3\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-9}{\left(x+1\right)\left(x-2\right)}.DKXD:x\ne-1;x\ne2\)
\(\Rightarrow3x-6-x-1=-9\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\)
\(b.\frac{\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.DKXDx\ne1;-1\)
\(\Rightarrow x^2+x-4x-4+x^2-x+4x-4=2x^2+2x-2x-2\)
\(\Leftrightarrow-6=0\left(voly\right)\)
vay \(S=\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)
đk: x khác 2
Đặt \(\frac{x^2}{x-2}=t\)
Ta có phương trình:
\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Với t=2 ta có:
\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí
Với t=-2:
\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
(x2-5x+1)(x2-4)=6(x-1)2
<=>(x2-5x+1)(x2-4)-6(x-1)2=0
<=>x4-5x3-3x2+20x-4-6x2+12x-6=0
<=>x4-5x3-9x2+32x-10=0
<=>x4-6x3+2x2+x3-6x2+2x-5x2+30x-10=0
<=>x2(x2-6x+2)+x(x2-6x+2)-5(x2-6x+2)=0
<=>(x2-6x+2)(x2+x-5)=0
- Với x2-6x+2=0 <=>x2-6x+9-7=0
<=>(x-3)2-7=0
\(\Leftrightarrow x-3=-\sqrt{7}hoac\sqrt{7}\)
\(\Leftrightarrow3\pm\sqrt{7}\)
- Với x2+x-5=0 <=>\(\left(x+\frac{1}{2}\right)^2-\frac{21}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{21}{4}\)
\(\Leftrightarrow x=-\frac{1}{2}-\frac{\sqrt{21}}{2}hoac\frac{\sqrt{21}}{2}-\frac{1}{2}\)
b)\(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
tính mẫu ra rồi rút gọn,x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ : \(x\ne\pm a\).
Với \(a=-3\) khi đó ta có pt :
\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)
\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)
\(\Leftrightarrow2x^2+6x+24=0\)
\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )
Phần b) tương tự.
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)
\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)
\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)
\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)
\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)
\(\Leftrightarrow2ax=3a^2+a\)
\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)
a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)
b) a=1
\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(ĐKXĐ:x\ne\pm3\)
Với a = -3
\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)
\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)
\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)
\(\Leftrightarrow-2x^2+6=0\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)
Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
Với a = 1
\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)
\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)
\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)
\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)
\(\Leftrightarrow-2x^2+2=0\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)(ktm)
Vậy với \(a=1\Leftrightarrow x\in\varnothing\)
c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :
\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)
\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)
\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)
\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)
Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\)
a) Ta có: (1) ⇔ |x + 1|2 = | x – 1|2 ⇔ (x + 1)2 = (x – 1)2
⇔ (x + 1)2 – (x – 1)2 = 0 ⇔ (x + 1 + x – 1)(x + 1 – x + 1) = 0
⇔ 4x = 0 ⇔ x = 0
Tập nghiệm: S = {0}.
b) Trường hợp 1: x ≥ 0.
Khi đó (2) ⇔ 4x = x2 + 4 ⇔ x2 – 4x + 4 = 0
⇔ (x – 2)2 = 0 ⇔ x = 2 ( thỏa điều kiện x ≥ 0)
Trường hợp 2: x < 0.
Khi đó (2) ⇔ –4x = x2 + 4 ⇔ x2 + 4x + 4 = 0
⇔ (x + 2)2 = 0 ⇔ x = –2 ( thỏa mãn điều kiện x > 0)
Tập nghiệm: S = {–2; 2}.