\(\sqrt{x-3}=2\)

b,\(\sqrt{x^2-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

a) \(\sqrt{x-3}=2\)

\(\Leftrightarrow\) \(x-3=4\)

\(\Leftrightarrow\) \(x=7\)

b) \(\sqrt{x^2-6x+9}=5\) (ĐKXĐ: \(x\ne0\) , \(x\ge3\) )

\(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=5\)

\(\Leftrightarrow\) \(\left|x-3\right|=5\)

\(\Leftrightarrow\) \(x-3=5\) với x > 0

\(x-3=-5\) với x < 0

\(\Leftrightarrow\) \(x=8\) (thỏa mãn)

\(x=-2\) (loại) | NOTE: cũng có thể ghi là không thỏa mãn)

c) \(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\) (ĐKXĐ: \(x\ne0\) )

\(\Leftrightarrow\) \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)

\(\Leftrightarrow\) \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)

\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) | Có lẽ không nên làm theo cách này vì nó khá dài dòng|

\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)-3\left(\sqrt{3}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\) \(\left(2x-3\right)\left(\sqrt{3}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\) \(2x-3=0\) hoặc \(\sqrt{3}+\sqrt{2}=0\) (luôn đúng)

\(\Leftrightarrow\) \(2x=3\)

\(\Leftrightarrow\) \(x=\dfrac{3}{2}\) (thỏa mãn)

25 tháng 12 2017

\(\sqrt{x-3}=2\\ \Rightarrow x-3=4\\ \Rightarrow x=7\)

\(\sqrt{x^2-6x+9}=5\\ \Rightarrow\sqrt{\left(x-3\right)^2}=5\\ \Rightarrow x-3=5\\ \Rightarrow x=8\)

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\\ \Rightarrow2\sqrt{3}x+3\sqrt{2}=2\sqrt{2}x+3\sqrt{3}\\ \Rightarrow2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\\ \Rightarrow2x=3\\ \Rightarrow x=\dfrac{3}{2}\)