Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
Bài 2 :
ĐKXĐ : \(\left\{{}\begin{matrix}x\le3\\x\le5\end{matrix}\right.\)
=> \(x\le3\)
Ta có : \(\sqrt{3-x}+\sqrt{5-x}=2\)
=> \(\sqrt{3-x}=2-\sqrt{5-x}\)
=> \(3-x=4-4\sqrt{5-x}+5-x\)
=> \(-4\sqrt{5-x}=-6\)
=> \(\sqrt{5-x}=\frac{3}{2}\)
=> \(x=2,75\) ( TM )
Ta có : \(A=\sqrt{3-2,75}-\sqrt{5-2,75}=-1\)
Vậy ...
Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.
d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Điều kiện \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)
Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)
Vay S = { 2 }
b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)
Vay S = { 4 }
c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)
Vay S = {\(\sqrt{2}\) }
d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)
Vay S = { - 3/2 }
e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)
Vay S = { 3 }
F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
Vay S = { 1/2 }
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
Bạn viết lại để bài giùm
Có duy nhất câu c bạn viết đúng đề (có dấu "="), còn lại tới 3 câu ko biết dâu "=" ở đâu
ĐK: \(x\ge\frac{3}{2}\)
\(\sqrt{2x-3}+3=x\)
<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\))
=> \(2x-3=\left(x-3\right)^2\)
<=> \(2x-3=x^2-6x+9\)
<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\)
=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\)
Hai câu sau tương tự nhé bn
\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)
<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)
<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)
<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\)
<=> \(2x=3=>x=\frac{3}{2}\)
\(\sqrt{x^2-2x+2}=x-2\)
\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)
\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
a) \(\sqrt{x-3}=2\)
\(\Leftrightarrow\) \(x-3=4\)
\(\Leftrightarrow\) \(x=7\)
b) \(\sqrt{x^2-6x+9}=5\) (ĐKXĐ: \(x\ne0\) , \(x\ge3\) )
\(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=5\)
\(\Leftrightarrow\) \(\left|x-3\right|=5\)
\(\Leftrightarrow\) \(x-3=5\) với x > 0
\(x-3=-5\) với x < 0
\(\Leftrightarrow\) \(x=8\) (thỏa mãn)
\(x=-2\) (loại) | NOTE: cũng có thể ghi là không thỏa mãn)
c) \(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\) (ĐKXĐ: \(x\ne0\) )
\(\Leftrightarrow\) \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)
\(\Leftrightarrow\) \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)
\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) | Có lẽ không nên làm theo cách này vì nó khá dài dòng|
\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)-3\left(\sqrt{3}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(\left(2x-3\right)\left(\sqrt{3}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(2x-3=0\) hoặc \(\sqrt{3}+\sqrt{2}=0\) (luôn đúng)
\(\Leftrightarrow\) \(2x=3\)
\(\Leftrightarrow\) \(x=\dfrac{3}{2}\) (thỏa mãn)
\(\sqrt{x-3}=2\\ \Rightarrow x-3=4\\ \Rightarrow x=7\)
\(\sqrt{x^2-6x+9}=5\\ \Rightarrow\sqrt{\left(x-3\right)^2}=5\\ \Rightarrow x-3=5\\ \Rightarrow x=8\)
\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\\ \Rightarrow2\sqrt{3}x+3\sqrt{2}=2\sqrt{2}x+3\sqrt{3}\\ \Rightarrow2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\\ \Rightarrow2x=3\\ \Rightarrow x=\dfrac{3}{2}\)