Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK:\(x\ge4\)
\(\sqrt{x-1}+\sqrt{x-4}=\sqrt{x+4}\Leftrightarrow x-1+x-4+2\sqrt{\left(x-1\right)\left(x-4\right)}=x+4\Leftrightarrow9-x=2\sqrt{x^2-5x+4}\left(ĐK:x\le9\right)\Leftrightarrow\left(9-x\right)^2=4\left(x^2-5x+4\right)\Leftrightarrow81-18x+x^2=4x^2-20x+16\Leftrightarrow3x^2-2x-65=0\Leftrightarrow3x^2-15x+13x-65=0\Leftrightarrow3x\left(x-5\right)+13\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(3x+13\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\3x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\left(tm\right)\\x=-\dfrac{13}{3}\left(ktm\right)\end{matrix}\right.\)
Vậy S={5}
b)\(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=1\Leftrightarrow\sqrt[3]{2x-1}-1+\sqrt[3]{x-1}=0\Leftrightarrow\dfrac{2x-1-1}{\left(\sqrt[3]{2x-1}\right)^2+2.\sqrt[3]{2x-1}+1}+\dfrac{x-1}{\left(\sqrt[3]{x-1}\right)^2}=0\Leftrightarrow\left(x-1\right)\left[\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}\right]=0\)(1)
Dễ thấy \(\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}>0\)
Vậy (1)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy S={1}
c) ĐK:\(\left[{}\begin{matrix}x\le-4\\x\ge-1\end{matrix}\right.\)
\(5\sqrt{x^2+5x+8}=x^2+5x+4\left(2\right)\)
Đặt a=x2+5x+4(a\(\ge0\))
(2)\(\Leftrightarrow5\sqrt{a+4}=a\Leftrightarrow25\left(a+4\right)=a^2\Leftrightarrow a^2-25a-100=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=\dfrac{25+5\sqrt{41}}{2}\left(tm\right)\\a=\dfrac{25-5\sqrt{41}}{2}\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a=\dfrac{25+5\sqrt{41}}{2}\Leftrightarrow\dfrac{25+5\sqrt{41}}{2}=x^2+5x+4\Leftrightarrow25+5\sqrt{41}=2x^2+10x+8\Leftrightarrow2x^2+10x-17-5\sqrt{41}=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3,045972466\left(tm\right)\\x=-8,045972466\left(tm\right)\end{matrix}\right.\)
Vậy S={-8,045972466;3,045972466}
c) ĐK:\(\left[{}\begin{matrix}x\le-4\\x\ge-1\end{matrix}\right.\)
\(5\sqrt{x^2+5x+28}=x^2+5x+4\left(1\right)\)
Đặt a=x2+5x+4(a\(\ge0\))
Vậy \(\left(1\right)\Leftrightarrow5\sqrt{a+24}=a\Leftrightarrow25\left(a+24\right)=a^2\Leftrightarrow a^2-25a-600=0\Leftrightarrow a^2-40a+15a-600=0\Leftrightarrow a\left(a-40\right)+15\left(a-40\right)=0\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a-40=0\\a+15=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=40\left(tm\right)\\a=-15\left(ktm\right)\end{matrix}\right.\)
Vậy ta có a=40\(\Leftrightarrow x^2+5x+4=40\Leftrightarrow x^2+5x-36=0\Leftrightarrow x^2-4x+9x-36=0\Leftrightarrow x\left(x-4\right)+9\left(x-4\right)=0\Leftrightarrow\left(x-4\right)\left(x+9\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-4=0\\x+9=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\left(tm\right)\\x=-9\left(tm\right)\end{matrix}\right.\)
Vậy S={-9;4}
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
a) ĐKXĐ: \(\left\{{}\begin{matrix}5-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x\ge-5\\x\ge3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x\ge3\end{matrix}\right.\Leftrightarrow3\le x\le5\)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x-3}\right)^2=\left(\sqrt{2}\right)^2\)
\(\Leftrightarrow5-x+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}+x-3=2\)
\(\Leftrightarrow2+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=2\)
\(\Leftrightarrow2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=0\)
mà \(2\ne0\)
nên \(\sqrt{\left(5-x\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\left(5-x\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
Vậy: S={3;5}
b) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-4\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow x-2\ge0\)\(\Leftrightarrow x\ge2\)
Ta có: \(\sqrt{x^2-4}=2\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x+2}-2\cdot\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x+2=4\end{matrix}\right.\Leftrightarrow x=2\)
Vậy: S={2}
-1; -6
b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)
PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)
Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)
Vậy....
P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(
b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)
Đặt \(x^2+5x+4=a\)
Theo đề, ta có \(5\sqrt{a+24}=a\)
=>25a+600=a2
=>a=40 hoặc a=-15
=>x2+5x-36=0
=>(x+9)(x-4)=0
=>x=4 hoặc x=-9
c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)
Đặt \(x^2+5x=a\)
Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)
\(\Leftrightarrow\sqrt[3]{8a}=a+2\)
=>(a+2)3=8a
=>\(a^3+6a^2+12a+8-8a=0\)
\(\Leftrightarrow a^3+6a^2+4a+8=0\)
Đến đây thì bạn chỉ cần bấm máy là xong
a) Điều kiện xác định của pt :
\(\begin{cases}x^2+5x+4\ge0\\x^2+5x+2\ge0\end{cases}\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-4\\x\ge-1\end{array}\right.\)
Ta có : \(x^2+5x-\sqrt{x^2+5x+4}=-2\)
\(\Leftrightarrow\left(x^2+5x+4\right)-\sqrt{x^2+5x+4}-2=0\)(1)
Đặt \(t=\sqrt{x^2+5x+4},t\ge0\)
\(pt\left(1\right)\Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(\text{loại}\right)\\t=2\left(\text{nhận}\right)\end{array}\right.\)
Với t = 2 ta có pt : \(x^2+5x+4=4\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(\text{nhận}\right)\\x=-5\left(\text{nhận}\right)\end{array}\right.\)
Vậy tập nghiệm của pt : \(S=\left\{-5;0\right\}\)
b) Điều kiện xác định của pt :
\(\begin{cases}x^2-3x+2\ge0\\x+3\ge0\\x-2\ge0\\x^2+2x-3\ge0\end{cases}\) \(\Leftrightarrow x\ge2\)
Ta có ; \(\sqrt{x^2-3x+2}+\sqrt{x+03}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x-3}\right)-\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x-3}=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\left(\text{nhận}\right)\\-2=-3\left(\text{vô lí - loại}\right)\end{array}\right.\)
Vậy pt có nghiệm x = 2
a/ ĐKXĐ \(x\ge4\)
\(x-1+2\sqrt{\left(x-1\right)\left(x-4\right)}+x-4=x+4\)
\(\Leftrightarrow2\sqrt{x^2-5x+4}=9-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}9-x\ge0\\4\left(x^2-5x+4\right)=\left(9-x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\4x^2-20x+16=x^2-18x+81\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\3x^2-2x-65=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{13}{3}< 4\left(l\right)\end{matrix}\right.\)
b/ \(x^2+5x+28-5\sqrt{x^2+5x+28}-24=0\)
Đặt \(\sqrt{x^2+5x+28}=t\ge\dfrac{\sqrt{87}}{2}\) ta được:
\(t^2-5t-24=0\Rightarrow\left[{}\begin{matrix}t=8\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+28}=8\Rightarrow x^2+5x-36=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-9\end{matrix}\right.\)