Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009
a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)
\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)
\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)
\(\Leftrightarrow-99x+1080-80x-6=0\)
\(\Leftrightarrow1074-179x=0\)
\(\Leftrightarrow179x=1074\)
hay x=6
Vậy: x=6
b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)
\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)
\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)
\(\Leftrightarrow6-18x-6+5x=0\)
\(\Leftrightarrow-13x=0\)
mà -13≠0
nên x=0
Vậy: x=0
c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)
\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)
\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)
\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)
\(\Leftrightarrow-181x-362=0\)
\(\Leftrightarrow-181x=362\)
hay x=-2
Vậy: x=-2
e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)
\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)
\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
hay x=1
Vậy: x=1
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
<=>\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)\( \left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
mà \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
nên phương trình đó xảy ra khi và chỉ khi x+2009=0
<=>x=-2009
Vậy phương trình có no là x=-2009
b) \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)\)=
\(\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\) \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\)\(\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\) \(\left(x+2009\right)\)\(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)= 0
\(\Leftrightarrow\)\(x+2009=0\)
( vì \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\) \(\ne0\))
\(\Leftrightarrow\) \(x=-2009\)
Vậy x = -2009
Câu \(1.\) Giải phương trình
\(a.\) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\) \(\left(1\right)\)
Đặt \(y=x^2+x\) \(\left(2\right)\) thì khi đó, phương trình \(\left(1\right)\) sẽ có dạng:
\(y^2+4y=12\)
\(\Leftrightarrow\) \(y^2+4y-12=0\)
\(\Leftrightarrow\) \(y^2+4y+4-16=0\)
\(\Leftrightarrow\) \(\left(y+2\right)^2-4^2=0\)
\(\Leftrightarrow\) \(\left(y-2\right)\left(y+6\right)=0\)
\(\Leftrightarrow\) \(^{y-2=0}_{y+6=0}\) \(\Leftrightarrow\) \(^{y=2}_{y=-6}\)
Đến bước này, ta cần xét hai trường hợp sau:
\(\text{*)}\) \(TH_1:\) Với \(y=2\) thì phương trình \(\left(2\right)\) trở thành:
\(x^2+x=2\)
\(\Leftrightarrow\) \(x^2+x-2=0\)
\(\Leftrightarrow\) \(\left(x^2-1\right)+x-1=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x+1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\) \(^{x-1=0}_{x+2=0}\) \(\Leftrightarrow\) \(^{x=1}_{x=-2}\) (dùng dấu ngoặc nhọn nhé bạn!)
\(\text{*)}\) \(TH_2:\) Với \(y=-6\) thì phương trình \(\left(2\right)\) trở thành:
\(x^2+x=-6\)
\(\Leftrightarrow\) \(x^2+x+6=0\)
\(\Leftrightarrow\) \(x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{23}{4}=0\)
\(\Leftrightarrow\) \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\) \(\left(3\right)\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\) \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}>0\)
Do đó, phương trình \(\left(3\right)\) vô nghiệm!
Vậy, tập nghiệm của phương trình \(\left(1\right)\) là \(S=\left\{-1;2\right\}\)
Câu \(1.\) Giải phương trình!
\(b.\)
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\) \(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\) \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\) \(\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\) \(\left(4\right)\)
Do \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\) nên từ \(\left(4\right)\) suy ra
\(x+2009=0\) \(\Leftrightarrow\) \(x=-2009\)
Vậy, \(S=\left\{-2009\right\}\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)