Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-2\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)
a) Ta có : \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-1\left(loai\right)\end{cases}\Leftrightarrow}x=-2}\)
\(\left(3x+2\right).\left(x^2-1\right)=\left[\left(3x\right)^2-2^2\right].\left(x+1\right)\)
\(\Rightarrow\left(3x+2\right).\left(x-1\right).\left(x+1\right)-\left(3x-2\right).\left(3x+2\right).\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left[x-1-3x+2\right]=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left(-2x+1\right)=0\)
đến đây dễ rồi :))
a) \(\left(x^2-3x+1\right)\left(x^2+5x+1\right)=2x^2\)
\(\Rightarrow\)Cậu xem lại đề xem có sai chỗ nào không nhé !
b) \(x^4-9x\left(x^2-2\right)+16x^2+4=0\)
\(\Leftrightarrow x^4-9x^3+18x+16x^2+4=0\)
\(\Leftrightarrow x^4-4x^3-2x^2-5x^3+20x^2+10x-2x^2+8x+4=0\)
\(\Leftrightarrow x^2\left(x^2-4x-2\right)-5x\left(x^2-4x-2\right)-2\left(x^2-4x-2\right)=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x-2=0\\x^2-5x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\pm\sqrt{6}\\x=\frac{5\pm\sqrt{33}}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{2\pm\sqrt{6};\frac{5+\sqrt{33}}{2}\right\}\)
b) \(ĐKXĐ:x\ne1;x\ne\frac{2}{3}\)
\(\frac{2x}{3x^2-5x+2}+\frac{13x}{3x^2+x+2}=0\)
\(\Leftrightarrow\frac{2x\left(3x^2+x+2\right)+13x\left(3x^2-5x+2\right)}{\left(3x^2-5x+2\right)\left(3x^2+x+2\right)}=0\)
\(\Leftrightarrow\frac{6x^3+2x^2+4x+39x^3-65x^2+26x}{\left(3x^2-5x+2\right)\left(3x^2+x+2\right)}=0\)
\(\Leftrightarrow45x^3-63x^2+30x=0\)
\(\Leftrightarrow3x\left(15x^2-21x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\15x^2-21x+10=0\left(ktm\right)\end{cases}}\)
Vậy x = 0 là nghiệm của phương trình.
\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)
\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)
\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)
\(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)
ĐKXĐ: x khác -4;-5;-6;-7
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow3.18=x^2+11x+28\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right).\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}\left(tm\right)}\)
Vậy...
a) \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
\(\Rightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+1\right)=0\)
\(\Leftrightarrow x\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
b) \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2-24x+9=4x^2-8x+4\)
\(\Leftrightarrow12x^2-16x+5=0\)
Ta có \(\Delta=16^2-4.12.5=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{16+4}{12}=\frac{5}{3}\\x=\frac{16-4}{12}=1\end{cases}}\)
a. Ta có: \(\left(x^2+3x+2\right)\left(x^2+9x+18\right)=168x^2\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-168x^2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)-168x^2=0\)
\(\Leftrightarrow\left(x^2+7x+6\right).\left(x^2+5x+6\right)-168x^2=0\)
Đặt: t = x2 + 6x + 6
Ta được:
(t+x)(t-x) - 168x2 = 0
<=> t2 - x2 - 168x2 = 0
<=> t2 - 169x2 = 0
<=> t = 13 hoặc t = -13
Đến đây tự giải tiếp 2 trường hợp nha!