\(16^x+7.4^x+5=3.2^{x+2}\)

b, ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

a/\(\Leftrightarrow\left(2^4\right)^x+7.\left(2^x\right)^2+5=3.2^x.4\)

Đặt \(2^x=y\) PT trở thành:

\(y^4+7y^2+5=12y\)

\(\Leftrightarrow y^4+7y^2-12y+5=0\)

Giải típ

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

4 tháng 3 2017

a)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)

     \(\frac{3x}{15}+\frac{10x+5}{15}=\frac{x-5}{15}\)

       \(3x+10x+5=x-5\)

       \(13x+5-x+5=0\)

        \(12x=-10\)

        \(x=-\frac{5}{6}\)

a, \(2+\frac{3}{x-5}=1\Leftrightarrow\frac{3}{x-5}=-1\)

\(\Leftrightarrow x-5=\frac{3}{-1}=-3\Leftrightarrow x=2\)

Vậy .............

b, ....................

\(\Leftrightarrow\frac{x-9}{x^2-3^2}-\frac{2}{x+3}=\frac{1}{x-3}\)

\(\Leftrightarrow\frac{x-9}{\left(x-3\right)\left(x+3\right)}-\frac{2x-6}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x-9-2x+6-x+3}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-2x}{\left(x-3\right)\left(x+3\right)}=0\Rightarrow-2x=0\Rightarrow x=0\)

Vậy .............

a) Ta có: \(\frac{3x-2}{6}-\frac{4-3x}{18}=\frac{4-x}{9}\)

\(\Leftrightarrow\frac{3\left(3x-2\right)}{18}-\frac{4-3x}{18}-\frac{2\left(4-x\right)}{18}=0\)

\(\Leftrightarrow9x-6-4+3x-\left(8-2x\right)=0\)

\(\Leftrightarrow12x-10-8+2x=0\)

\(\Leftrightarrow10x-18=0\)

\(\Leftrightarrow10x=18\)

hay \(x=\frac{9}{5}\)

Vậy: \(x=\frac{9}{5}\)

b) Ta có: \(\frac{2+3x}{6}-x+2=\frac{x-7}{9}\)

\(\Leftrightarrow\frac{3\left(2+3x\right)}{18}-\frac{18x}{18}+\frac{36}{18}-\frac{2\left(x-7\right)}{18}=0\)

\(\Leftrightarrow6+9x-18x+36-\left(2x-14\right)=0\)

\(\Leftrightarrow42-9x-2x+14=0\)

\(\Leftrightarrow56-11x=0\)

\(\Leftrightarrow11x=56\)

hay \(x=\frac{56}{11}\)

Vậy: \(x=\frac{56}{11}\)

c) ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{6-x}{x^2-9}+\frac{2}{x+3}=\frac{-5}{x-3}\)

\(\Leftrightarrow\frac{6-x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow6-x+2x-6=-5x-15\)

\(\Leftrightarrow x+5x+15=0\)

\(\Leftrightarrow6x=-15\)

hay \(x=\frac{-5}{2}\)(tm)

Vậy: \(x=\frac{-5}{2}\)

d) Ta có: \(\left(5x+2\right)\left(x^2-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x^2-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-2\\x^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{5}\\x=\pm\sqrt{7}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-2}{5};\sqrt{7};-\sqrt{7}\right\}\)

e) ĐKXĐ: x∉{4;-4}

Ta có: \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)

\(\Leftrightarrow\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{5x-2}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)

\(\Leftrightarrow3x+12+5x-2-\left(4x-16\right)=0\)

\(\Leftrightarrow8x+10-4x+16=0\)

\(\Leftrightarrow4x+26=0\)

\(\Leftrightarrow4x=-26\)

hay \(x=\frac{-13}{2}\)(tm)

Vậy: \(x=\frac{-13}{2}\)

30 tháng 1 2019

a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)

\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow x=\frac{3}{2}\)

b) làm tương tự nhé

14 tháng 1 2018

a) \(\left(x^2-4\right)=\left(x-2\right)\left(3-2x\right)\)

\(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\left(x-2\right)\left(3x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\3x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)

vậy...

b) \(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)   \(ĐKXĐ:x\ne\pm2\)

\(\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\left(x+2\right)^2-\left(x-2\right)^2=16\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)

\(\Leftrightarrow8x-16=0\)

\(\Leftrightarrow8\left(x-2\right)=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\) ( không thỏa mã ĐKXĐ \(x\ne\pm2\)

vậy \(x\in\varnothing\)

23 tháng 3 2020

a)\(2+\frac{3}{x-5}=1\)

\(\Rightarrow\frac{3}{x-5}=-1\)

\(\Rightarrow3=-x+5\)

\(\Leftrightarrow x+3=5\)

\(\Rightarrow x=2\)