Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0
<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0
<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0
<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0
<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0
<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0
<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0
<=> (2x - 1)(x - 1)2(x - 2) = 0
<=> 2x - 1=0
hoặc x - 1 = 0
hoặc x - 2 = 0
<=> x = 1/2
hoặc x = 1
hoặc x = 2
Vậy S = {1/2; 1; 2}
c) (x+1)(x+2)(x+4)(x+5)=40
<=> (x+1)(x+5)(x+2)(x+4)=40
<=>(x^2+6x+5)(x^2+6x+8)=40
Đặt x^2+6x+5=y
=>y(y+3)=40
=>y^2+3y=40<=>y^2+2.\(\frac{3}{2}\)y+\(\frac{9}{4}\)=40+\(\frac{9}{4}\)<=> (y+\(\frac{3}{2}\))2=42,25<=> y+\(\frac{3}{2}\)=6,5 hoặc -6,5
Bạn tự làm tiếp nha :333
a)x4 - 4x3 - 19x2 +106x - 120 = 0
=>x4 -2x3 -2x3+4x2 -23x2 +46x +60x - 120 = 0
=>x3(x-2) -2x2(x-2) -23x(x-2) +60(x-2)= 0
=>(x3- 2x2 -23x+ 60)(x-2) =0
=>(x3 - 3x2 +x2 -3x -20x+60)(x -2) = 0
=>(x2 +x -20)(x-3)(x-2) = 0
=>(x2 -4x +5x -20)(x-3)(x-2) = 0
=>(x+5)(x-4)(x-3)(x-2) =0
=>x= -5; 4; 3; 2
b)=>4x4 -4x3 +16x3 -16x2 +21x2 -21x +15x -15= 0
=>(x-1)(4x3 +16x2 +21x+15)= 0
=>...bạn tự làm phần tiếp theo nhé
c)Làm giống nguyễn thị ngọc linh
a)\(-ĐKXĐ:\hept{\begin{cases}x-14\ne0;x-13\ne0\\x-9\ne0\\x-11\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne14;x\ne13\\x\ne9\\x\ne11\end{cases}}\)
- Ta có : \(\frac{2}{x-14}-\frac{5}{x-13}=\frac{2}{x-9}-\frac{5}{x-11}\)
\(\Leftrightarrow\frac{2}{x-14}-\frac{5}{x-13}-\frac{2}{x-9}+\frac{5}{x-11}=0\)
\(\Leftrightarrow\left(\frac{2}{x-14}-\frac{2}{x-9}\right)-\left(\frac{5}{x-13}-\frac{5}{x-11}\right)=0\)
\(\Leftrightarrow2\left(\frac{1}{x-14}-\frac{1}{x-9}\right)-5\left(\frac{1}{x-13}-\frac{1}{x-11}\right)=0\)\(\Leftrightarrow2.\frac{\left(x-9\right)-\left(x-14\right)}{\left(x-9\right)\left(x-14\right)}-5.\frac{\left(x-11\right)-\left(x-13\right)}{\left(x-11\right)\left(x-13\right)}=0\)
\(\Leftrightarrow2.\frac{5}{\left(x-9\right)\left(x-14\right)}-5.\frac{2}{\left(x-11\right)\left(x-13\right)}=0\)
\(\Leftrightarrow\frac{10}{\left(x-9\right)\left(x-14\right)}-\frac{10}{\left(x-11\right)\left(x-13\right)}=0\)
\(\Leftrightarrow10\left[\frac{1}{\left(x-9\right)\left(x-14\right)}-\frac{1}{\left(x-11\right)\left(x-13\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x-11\right)\left(x-13\right)}{\left(x-9\right)\left(x-14\right)\left(x-11\right)\left(x-13\right)}-\frac{\left(x-9\right)\left(x-14\right)}{\left(x-9\right)\left(x-14\right)\left(x-11\right)\left(x-13\right)}=\) \(0\)
\(\Leftrightarrow\left(x-11\right)\left(x-13\right)-\left(x-9\right)\left(x-14\right)=0\)
\(\Leftrightarrow x^2-24x+143-x^2+23x-126=0\)
\(\Leftrightarrow-x+17=0\Leftrightarrow-x=-17\Leftrightarrow x=17\)
Vậy pt có tập nghiệm S = { 17 }
P/s: Mk làm hơi lòng vòng, bn thông cảm nhé !
( x - 2 ).( x + 3 )2 - ( x - 2 ).(x - 1)2 = 0
(=) ( x - 2 ).[ ( x + 3 )2 - ( x - 1 )2 ] = 0
(=) ( x - 2).[ x2 + 6x + 9 - x2 + 2x - 1] = 0
(=) ( x - 2 ) .( 8x + 8 ) = 0
(=) \(\orbr{\begin{cases}x-2=0\\8x+8=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy phương trình có nghiệm là : x = 2 , -1
b) 9x2 - 6x + 1 = 4x2
(=) 9x2 - 6x + 1 - 4x2 = 0
(=) 5x2 - 6x + 1 = 0
(=) 5x2 - 5x - x + 1 = 0
(=) 5x.( x - 1 ) - (x - 1) = 0
(=) ( x - 1 ).( 5x - 1) = 0
(=)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , \(\frac{1}{5}\)
c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= 1
(=) \(\frac{3\left(x-3\right)}{3}\)\(-\)\(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= \(\frac{3}{3}\)
(=) 3.( x - 3) - ( x - 3 ).( 2x +1 ) = 3
(=) 3x - 9 - 2x2 +5x +3 -3 = 0
(=) -2x2 +8x -9 = 0 (loại )
Vậy phương trình vô nghiệm
d) x2 + 6x - 7 =0
(=) x2 +7x - x - 7 = 0
(=) x.( x + 7 ) - ( x + 7 ) = 0
(=) ( x - 1 ) .( x+7 ) = 0
(=) \(\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , -7
\(9x^3-6x^2+12x=8\)
\(\Leftrightarrow9x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(3x-2\right)^3=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-2\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)
x^3 - 9X^2 +19x -11 =0
<=> (x^3 - x^2) - (8x^2 - 8x) +(11x-11)=0
<=> x^2(x-1) - 8x(x-1) + 11(x-1)=0
<=> (x-1)(x^2-8x+11) = 0
<=> x-1=0
<=> x=1
9x^3 - 6x^2 +12x=8
<=> 9x^3-6x^2+12x-8=0
<=. 3x^2(3x-2) + 4(3x-2)=0
<=> (3x-2)(3x^2 +4 ) =0
<=> 3x-2 = 0 (do 3x^2 +4 >= 4 >0)
<=> x= 2/3