Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow x^4-4x-1=0\)
\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)
\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)
\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)
Tự giải pt bậc 2 nhak :))))
Đặt \(a=x^2+3x-4;b=3x^2+7x+4\)
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+4\right)\left(x-1\right)=0\\\left(3x+4\right)\left(x+1\right)=0\\2x\left(2x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-4;1;-\dfrac{4}{3};-1;0;-\dfrac{5}{2}\right\}\)
x=-4, x=-5/2, x=-4/3, x=-1, x=0, x=1
bậc to quá nghĩ cách giải đã
Bài 1:
b: \(x^3-4x^2+7x-6=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+4x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)
=>x-2=0
hay x=2
c: \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)
=>(x+1)(x+2)(2x+1)=0
hay \(x\in\left\{-1;-2;-\dfrac{1}{2}\right\}\)
d: \(2x^3-9x+2=0\)
\(\Leftrightarrow2x^3-4x^2+4x^2-8x-x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+1-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1+\dfrac{\sqrt{6}}{2}\right)\left(x+1-\dfrac{\sqrt{6}}{2}\right)=0\)
hay \(x\in\left\{2;-1-\dfrac{\sqrt{6}}{2};-1+\dfrac{\sqrt{6}}{2}\right\}\)
+)x=0 khong phai la nghiem cua phuong trinh
+)chia ca 2 ve cho \(x^2\ne\) 0 ta co:
\(x^2-5x+8-\frac{5}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-5\left(x+\frac{1}{x}\right)+8=0\) (1)
Dat \(x+\frac{1}{x}=a\) \(\left(\left|a\right|\ge2\right)\)
\(\Rightarrow\)\(x^2+\frac{1}{x^2}=a^2-2\)
(1)\(\Leftrightarrow\)\(\left(a^2-2\right)-5a+8=0\)
den day ban tu giai tiep nhe
Ta có:\(8x^2+10x+3=\left(8x^2+6x\right)+\left(4x+3\right)\)
\(=2x\left(4x+3\right)+\left(4x+3\right)\)
\(=\left(2x+1\right)\left(4x+3\right)\)
\(4x^2+7x+3=\left(4x^2+4x\right)+\left(3x+3\right)\)
\(=4x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(4x+3\right)\)
\(ĐKXĐ:x\ne-1,x\ne\frac{-3}{4}\)
\(8x^2+10x+3=\frac{1}{4x^2+7x+3}\)
<=>\(\left(8x^2+10x+3\right)\left(4x^2+7x+3\right)=1\)
<=>\(\left(2x+1\right)\left(4x+3\right)\left(x+1\right)\left(4x+3\right)=1\)
<=>\(\left(2x+1\right)\left(4x+3\right)^2\left(x+1\right)=1\)
<=>\(\left(4x+2\right)\left(4x+3\right)^2\left(4x+4\right)=8\)
(Nhân cả 2 vế với 8)
<=>\(\left[\left(4x+2\right)\left(4x+4\right)\right]\left(4x+3\right)^2=8\)
<=>\(\left(16x^2+24x+8\right)\left(16x^2+24x+9\right)=8\)
Đặt \(16x^2+24x+8.5=y\)
\(ĐK:y>-0.5\)
(Vì \(16x^2+24x+8.5=\left(4x+3\right)^2-0.5>-0.5\)với mọi x thỏa mãn ĐKXĐ)
Phương trình trở thành:
(y-0.5)(y+0.5)=8
<=>\(y^2-0.25=8\)
<=>\(y^2=8.25\)
<=>\(\orbr{\begin{cases}y=\frac{\sqrt{33}}{2}\left(\text{thỏa mãn}\right)\\y=\frac{-\sqrt{33}}{2}\left(\text{loại}\right)\end{cases}}\)
Với \(y=\frac{\sqrt{33}}{2}\)
Ta có:\(16x^2+24x+8.5=\frac{\sqrt{33}}{2}\)
<=>\(32x^2+48x+17-\sqrt{33}=0\)
<=>\(\left(x\sqrt{33}+3\sqrt{2}\right)^2=\sqrt{33}+1\)
<=>\(\orbr{\begin{cases}x\sqrt{33}+3\sqrt{2}=\sqrt{\sqrt{33}+1}\\x\sqrt{33}+3\sqrt{2}=-\sqrt{\sqrt{33+1}}\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{\sqrt{\sqrt{33}+1}-3\sqrt{2}}{\sqrt{33}}\\x=\frac{-\sqrt{\sqrt{33}+1}-3\sqrt{2}}{\sqrt{33}}\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{\sqrt{33\sqrt{33}+33}-3\sqrt{66}}{33}\left(\text{thỏa mãn ĐKXĐ}\right)\\x=\frac{-\sqrt{33\sqrt{33}+33}-3\sqrt{66}}{33}\left(\text{thỏa mãn ĐKXĐ}\right)\end{cases}}\)
(Kết luận: Vậy tập nghiệm của phương trình đã cho là...)