K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

mấy bài này , e ko chắc lắm đâu , coi lại rồi xem có j sai k nhé ! Sai thì ns vs e để e còn sửa

a) \(pt\Leftrightarrow14x^2-6x-8=0\Leftrightarrow2\left(x-1\right)\left(7x+4\right)=0\)

b) \(-3x^4-10x^3+32x^2=0\Leftrightarrow x^2\left(2-x\right)\left(3x+16\right)=0\)

c) \(\Leftrightarrow\dfrac{\left(x-1\right)\left(x^5-5x^4-5\right)}{x^4-x+1}=0\)

5 tháng 4 2020

a, Ta có : \(x^3-5x^2+8x-4=0\)

=> \(x^3-x^2-4x^2+4x+4x-4=0\)

=> \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=> \(\left(x-1\right)\left(x-2\right)^2=0\)

=> \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b, Ta có : \(x^4-4x^2+12x-9=0\)

=> \(x^4-x^3+x^3-x^2-3x^2+3x+9x-9=0\)

=> \(x^3\left(x-1\right)+x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^3+3x^2-2x^2-6x+3x+9\right)=0\)

=> \(\left(x-1\right)\left(x^2\left(x+3\right)-2x\left(x+3\right)+3\left(x+3\right)\right)=0\)

=> \(\left(x-1\right)\left(x+3\right)\left(x^2-2x+3\right)=0\)

\(x^2-2x+3=\left(x-1\right)^2+2>0\)

=> \(\left(x-1\right)\left(x+3\right)=0\)

=> \(\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c, Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

=> \(\left(x^2+x+4x+4\right)\left(x^2+2x+3x+6\right)-24=0\)

Đặt \(x^2+5x=a\) ta được phương trình :\(\left(a+4\right)\left(a+6\right)-24=0\)

=> \(a^2+4a+6a+24-24=0\)

=> \(a\left(a+10\right)=0\)

=> \(\left[{}\begin{matrix}a=0\\a+10=0\end{matrix}\right.\)

- Thay lại \(x^2+5x=a\) vào phương tình ta được :\(\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

( tự kết luận dùm mình nha )

NV
5 tháng 4 2020

a/ \(x^3-4x^2+4x-x^2+4x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b/ \(\Leftrightarrow x^4+2x^3-3x^2-2x^3-4x^2+6x+3x^2+6x-9=0\)

\(\Leftrightarrow x^2\left(x^2+2x-3\right)-2x\left(x^2+2x-3\right)+3\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-2x+3\right)=0\)

\(\Leftrightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+4=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+4=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

9 tháng 7 2019

Bấm máy tính giải phương trình bậc 4
1) x = -3

x = 1

x = \(1-\sqrt{2}\)

\(1+\sqrt{2}\)

Tương tự 1 => https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=%20x%5E4%20-%203x%5E3%20-%207x%5E2%20%2B24x%20-%208%20%3D%200
Tương tự 2 => https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=x%5E4%20-%20x%5E3%20-%204x%5E2%20%2B%20x%20%2B%201%20%3D%200

NV
13 tháng 3 2020

a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)

b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)

NV
13 tháng 3 2020

d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)

Đặt \(\left|2x-5\right|=t\ge0\)

\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)

16 tháng 8 2016

1)Thấy: x=0;y=0 không phải là nghiệm của hệ.

\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)

Trừ vế theo vế hai phương trình,đc:

\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)

\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:

\(26x^4-426x^2-1728=0\)

\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé oaoa

 

16 tháng 8 2016

lần sau bn đăng ít 1 thôi nhé