\(7x^2-5x+6=\left(11x-1\right)\sqrt{x^2+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(t=\sqrt{\left(x^2+3\right)}\)

\(\Rightarrow t^2=x^2+3\)

\(\Rightarrow\)Phương trình trở thành 

\(7t^2-\left(11x-1\right)t-5\left(x+3\right)=0\)

Delta = \(\left(11x-1\right)+4.7.5\left(x+3\right)>0\forall x\)

'-' Đến đây bạn tìm nghiệm t theo ẩn x sau đó thay \(t=\sqrt{\left(x^2+3\right)}\)để tìm ra đáp án nhé !

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

7 tháng 8 2018

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

8 tháng 11 2017

\(2\sqrt{3x-2}-2=11x+\sqrt{5x+6}-3\sqrt{\left(3x-2\right)\left(5x+6\right)}\)

ĐK: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow2\sqrt{3x-2}-2-11x-\sqrt{5x+6}+3\sqrt{\left(3x-2\right)\left(5x+6\right)}=0\)

\(\Leftrightarrow2\sqrt{3x-2}-4-11x+22-\sqrt{5x+6}+4+3\sqrt{\left(3x-2\right)\left(5x+6\right)}-24=0\)

\(\Leftrightarrow2\dfrac{3x-2-16}{\sqrt{3x-2}+4}-11\left(x-2\right)-\dfrac{5x+6-16}{\sqrt{5x+6}+4}+\dfrac{9\left(3x-2\right)\left(5x+6\right)-576}{3\sqrt{\left(3x-2\right)\left(5x+6\right)}+24}=0\)

\(\Leftrightarrow\dfrac{6\left(x-2\right)}{\sqrt{3x-2}+4}-11\left(x-2\right)-\dfrac{5\left(x-2\right)}{\sqrt{5x+6}+4}+\dfrac{9\left(x-2\right)\left(15x+38\right)}{3\sqrt{\left(3x-2\right)\left(5x+6\right)}+24}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{6}{\sqrt{3x-2}+4}-11-\dfrac{5}{\sqrt{5x+6}+4}+\dfrac{9\left(15x+38\right)}{3\sqrt{\left(3x-2\right)\left(5x+6\right)}+24}\right)=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

Vd:√2x+1=a và √x=a => (5x+1).a-(7x+3).a=1 => 5xa-a-7xa+3a=1 => -2xa-2a=1 => -2a(x+1)=1 => th1 a=1 Th2. x+1=1=> x=0
NV
23 tháng 10 2020

\(2\left(x^2+3\right)-\left(7x+1\right)\sqrt{x^2+3}+3x^2+3x=0\)

Đặt \(\sqrt{x^2+3}=t>0\)

\(\Rightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\)

\(\Delta=\left(7x+1\right)^2-8\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{7x+1-\left(5x-1\right)}{4}=\frac{x+1}{2}\\t=\frac{7x+1+5x-1}{4}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\frac{x+1}{2}\left(x\ge-1\right)\\\sqrt{x^2+3}=3x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=\frac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\) \(\Leftrightarrow...\)

23 tháng 10 2020

mọi người giúp mình với :)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



17 tháng 1 2019

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng