Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1)
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ]
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ]
Đặt a = ( x + 1 ) ( x + 4 )
(1) <=> a = 5 căn ( a + 24 )
<=> a^2 = 25 ( a + 24 )
<=> a^2 - 25a - 600 = 0
<=> a1 = 40
a2 = -15
với a = 40 ta có:
( x + 1 ) ( x + 4 ) = 40
<=> x^2 + 5x + 4 = 40
<=> x^2 + 5x - 36 = 0
<=> x = 4 và x = - 9
với a = -15, ta có:
( x + 1 ) ( x + 4 ) = -15
<=> x^2 + 5x + 4 = -15
<=> x^2 + 5x + 19 = 0
delta < 0 => pt vô nghiệm
Vậy s = { -9; 4}
\(2\sqrt{3x-2}-2=11x+\sqrt{5x+6}-3\sqrt{\left(3x-2\right)\left(5x+6\right)}\)
ĐK: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow2\sqrt{3x-2}-2-11x-\sqrt{5x+6}+3\sqrt{\left(3x-2\right)\left(5x+6\right)}=0\)
\(\Leftrightarrow2\sqrt{3x-2}-4-11x+22-\sqrt{5x+6}+4+3\sqrt{\left(3x-2\right)\left(5x+6\right)}-24=0\)
\(\Leftrightarrow2\dfrac{3x-2-16}{\sqrt{3x-2}+4}-11\left(x-2\right)-\dfrac{5x+6-16}{\sqrt{5x+6}+4}+\dfrac{9\left(3x-2\right)\left(5x+6\right)-576}{3\sqrt{\left(3x-2\right)\left(5x+6\right)}+24}=0\)
\(\Leftrightarrow\dfrac{6\left(x-2\right)}{\sqrt{3x-2}+4}-11\left(x-2\right)-\dfrac{5\left(x-2\right)}{\sqrt{5x+6}+4}+\dfrac{9\left(x-2\right)\left(15x+38\right)}{3\sqrt{\left(3x-2\right)\left(5x+6\right)}+24}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{6}{\sqrt{3x-2}+4}-11-\dfrac{5}{\sqrt{5x+6}+4}+\dfrac{9\left(15x+38\right)}{3\sqrt{\left(3x-2\right)\left(5x+6\right)}+24}\right)=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(2\left(x^2+3\right)-\left(7x+1\right)\sqrt{x^2+3}+3x^2+3x=0\)
Đặt \(\sqrt{x^2+3}=t>0\)
\(\Rightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\)
\(\Delta=\left(7x+1\right)^2-8\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{7x+1-\left(5x-1\right)}{4}=\frac{x+1}{2}\\t=\frac{7x+1+5x-1}{4}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\frac{x+1}{2}\left(x\ge-1\right)\\\sqrt{x^2+3}=3x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=\frac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\) \(\Leftrightarrow...\)
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
Đặt \(t=\sqrt{\left(x^2+3\right)}\)
\(\Rightarrow t^2=x^2+3\)
\(\Rightarrow\)Phương trình trở thành
\(7t^2-\left(11x-1\right)t-5\left(x+3\right)=0\)
Delta = \(\left(11x-1\right)+4.7.5\left(x+3\right)>0\forall x\)
'-' Đến đây bạn tìm nghiệm t theo ẩn x sau đó thay \(t=\sqrt{\left(x^2+3\right)}\)để tìm ra đáp án nhé !