K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(6x^4-x^3-7x^2+x+1=0\)

\(\Leftrightarrow\left(6x^4-6x^3\right)+\left(5x^3-5x^2\right)+\left(-2x^2+2x\right)+\left(-x+1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(6x^3-3x^2\right)+\left(8x^2-4x\right)+\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(3x^2+4x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[\left(3x^2+3x\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[3x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x+1\right)\left(3x+1\right)=0\)

\(\left\{{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

12 tháng 2 2016

b/ (12x + 7)2(3x + 2)(2x + 1) = 3

=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3 

- Nhân 2 vế cho 24 ta đc:

    (144x2 + 168x + 49) (144x2 + 168x + 48) = 72

- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:

    (a + 1).a = 72

    => a2 + a - 72 = 0 

    => (a + 9)(a - 8) = 0

    => a = -9 hoặc a = 8

- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm

- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6

Vậy x = -1/3 , x = -5/6

11 tháng 2 2016

muốn giải câu nào

22 tháng 1 2016

Mình chỉ biết bài b) thôi, mà cũng ko biết có đúng ko

x4+x3+x+1=0

<=> (x4+x3)+(x+1)=0

<=> x3(x+1)+(x+1)

<=> (x+1)(x3+1)=0

=>x+1=0

    x3+1=0

=> x= -1

     x3= -1

=> x= -1

28 tháng 1 2018

a) Mạn phép sửa đề :

x4 - 3x3 + 4x2 - 3x + 1 = 0

⇔ x4 - x3 - 2x3 + 2x2 + 2x2 - 2x - x + 1 = 0

⇔ x3( x - 1) - 2x2( x - 1) + 2x( x - 1) - ( x - 1) = 0

⇔ ( x - 1)( x3 - 2x2 + 2x - 1) = 0

⇔ ( x - 1)[ ( x - 1)(x2 + x + 1) - 2x( x - 1)] = 0

⇔ ( x - 1)2( x2 - x + 1) = 0

Do : x2 - x + 1 \(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\text{≥}\dfrac{3}{4}>0\text{∀}x\)

⇔ ( x - 1)2 = 0

⇔ x = 1

Vậy,....

b) 6x4 - x3 - 7x2 + x + 1 = 0

⇔ 6x4 + 6x3 - 7x3 - 7x2 + x + 1 = 0

⇔ 6x3( x + 1) - 7x2( x + 1) + x + 1 = 0

⇔ ( x + 1)( 6x3 - 7x2 + 1 ) = 0

⇔ ( x + 1)( 6x3 - 6x2 - x2 + 1 ) = 0

⇔ ( x + 1)[ 6x2( x - 1) -( x + 1)( x - 1)] = 0

⇔ ( x + 1)2( 6x2 - x - 1) = 0

⇔ ( x + 1)2( 6x2 - 3x + 2x - 1) = 0

⇔( x + 1)2[ 3x( 2x - 1) + 2x - 1] = 0

⇔( x + 1)2( 2x - 1)( 3x + 1) = 0

⇔ x = -1 ; x = \(\dfrac{1}{2}\) hoặc : x = \(\dfrac{-1}{3}\)

Vậy,....

27 tháng 12 2017

\(x^2+7x-a^2+a+12=0\)

\(\Leftrightarrow x^2-ax+4x+ax+3x-a^2+a+12=0\)

\(\Leftrightarrow\left(x^2-ax+4x\right)+\left(ax+3x\right)-\left(a^2+3a\right)+\left(4a+12\right)=0\)

\(\Leftrightarrow x\left(x-a+4\right)+x\left(a+3\right)-a\left(a+3\right)+4\left(a+3\right)=0\)

\(\Leftrightarrow x\left(x-a+4\right)+\left(a+3\right)\left(x-a+4\right)=0\)

\(\Leftrightarrow\left(x+a+3\right)\left(x-a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+a+3=0\\x-a+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-a-3\\x=a-4\end{cases}}}\)

Vậy \(x=-a-3\) hoặc \(x=a-4\)

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)