K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

\(\left(3x-2\right)^2-4x\left(x-3\right)=\left(5x+1\right)\left(x-4\right).\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow19x=-8\)

\(\Rightarrow x=-\frac{8}{19}\)

\(\left(x+3\right)\left(3x-1\right)=9x^2-1\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=\left(3x-1\right)\left(3x+1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3-3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2-2x\right)=0\)

Th1 : 3x - 1 = 0

=> x = 1/3

Th2: 2 - 2x = 0

=> x = 1

11 tháng 3 2020

a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0 

<=>  (x - 3)(4x - 1 - 5x - 2) = 0

<=>  (x - 3)(-x - 3) = 0

<=>  x  = 3 hoặc x = -3

b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0 

<=>  (x + 3)(x - 5 + 3x - 4) = 0

<=>  (x + 3)(4x - 9) = 0

<=>  x = -3 hoặc x = 9/4

c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0 

<=>  3x^2 + 17x - 6 + x^2 - 36 = 0

<=>  4x^2 + 17x - 42 = 0

<=>  4x^2 + 24x - 7x - 42 = 0

<=>  4x(x + 6) - 7(x + 6) = 0

<=>  (4x - 7)(x + 6) = 0

<=>  x = -6 hoặc x = 7/4

d) ( x + 4 ) ( 5x + 9 ) - x+ 16 = 0 

<=>  5x^2 + 29x + 36 - x^2 + 16 = 0

<=>  4x^2 + 29x + 52 = 0

<=>  4x^2 + 16x + 13x + 42 = 0

<=>  4x(x + 4) + 13(x + 4) = 0

<=>  (4x + 13)(x + 4) = 0

<=>  x = -13/4 và x = -4

13 tháng 7 2017

\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)

\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)

\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)

\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)

\(\Leftrightarrow-16x-8=0\)

\(\Leftrightarrow-8\left(2x-1\right)=0 \)

\(\Rightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy   \(x=\frac{1}{2}\)

19 tháng 6 2018

1) \(=9x^2-1\)

2) \(=9x^4-y^2\)

3)\(=25x^2-\dfrac{9}{4}\)

4) \(=x^3-1\)

5) \(=x^6-8\)

6) \(=x^3-64\)

7) \(=27x^3+8\)

8) \(=x^3-64\)

9) \(=x^3-\dfrac{1}{27}\)

10) \(x^3+\dfrac{1}{27}\)

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5