K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

PT 2 

\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))

\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Rightarrow2x^2-3x+6=0\)

=> PT vô nghiệm.

 

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

NV
16 tháng 1 2024

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

1.

$\sqrt{3x^2}-\sqrt{12}=0$

$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$

$\Leftrightarrow 3x^2=12$

$\Leftrightarrow x^2=4$

$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$

 

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

2. 

$\sqrt{(x-3)^2}=9$

$\Leftrightarrow |x-3|=9$

$\Leftrightarrow x-3=9$ hoặc $x-3=-9$

$\Leftrightarrow x=12$ hoặc $x=-6$

12 tháng 4 2019

Đặt \(x+1=y;\sqrt[3]{x+2}=z\)

pt <=> \(x^3+\left(x^3+3x^2+3x+1\right)+\left(x+2\right)=3x\left(x+1\right)\sqrt[3]{x+2}\)

<=>\(x^3+\left(x+1\right)^3+\left(\sqrt[3]{x+2}\right)^3=3x\left(x+1\right)\sqrt[3]{x+2}\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

Đến đây trở về dạng quen thuộc rồi, bạn tự làm nốt, có gì không hiểu thì ib hỏi mình nhé :))

12 tháng 4 2019

Vậy sau khi chứng minh x=y=z thì => nghiệm. Nhưng nhận loại như thế nào

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)

\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)

\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)

b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì

\(\Rightarrow b^2-a^2=x^2-3x+2\)

Làm nốt 

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

20 tháng 5 2018

Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia

25 tháng 7 2018

\(2x^2+2x+1=\sqrt{4x+1}\)

\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)

\(4x^4+8x^3+8x^2+4x+1=4x+1\)

\(\Leftrightarrow4x^4+8x^3+8x^2=0\)

\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=0\)