K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

mk viết thiều nó bằng 0 nữa nhé 

24 tháng 8 2019

bang 188336,44

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

1.

$\sqrt{3x^2}-\sqrt{12}=0$

$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$

$\Leftrightarrow 3x^2=12$

$\Leftrightarrow x^2=4$

$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$

 

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

2. 

$\sqrt{(x-3)^2}=9$

$\Leftrightarrow |x-3|=9$

$\Leftrightarrow x-3=9$ hoặc $x-3=-9$

$\Leftrightarrow x=12$ hoặc $x=-6$

8 tháng 7 2017

hong dịch đ.c :>
 

a: Ta có: \(x^2+3x+4=0\)

\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)

Do đó: Phương trình vô nghiệm

3 tháng 6 2021

Đk:\(x\ge2\)

PT \(\Leftrightarrow x+1+3x+2\sqrt{3x\left(x+1\right)}=9+4x-8+6\sqrt{4x-8}\)

\(\Leftrightarrow\sqrt{3x\left(x+1\right)}=3\sqrt{4x-8}\)

\(\Leftrightarrow3x\left(x+1\right)=9\left(4x-8\right)\)

\(\Leftrightarrow3x^2-33x+72=0\)

\(\Leftrightarrow3x^2-24x-9x+72=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\)(Tm)

Vậy ...

25 tháng 2 2018

Có |x-1| + |2x-3| + |3x+5|+|4x-7|+11x-8 = 0    (1)

<=> |x-1|+|2x-3|+|3x-5|+|4x-7| = 8-11x     

Có \(\left|x-1\right|\ge0;\left|2x-3\right|\ge0;\left|3x-5\right|\ge0;\left|4x-7\right|\ge0\)

\(\Rightarrow\left|x-1\right|+\left|2x-3\right|+\left|3x-5\right|+\left|4x-7\right|\ge0\)

\(\Rightarrow8-11x\ge0\Leftrightarrow x\le\frac{8}{11}\)

\(\Rightarrow x-1< 0;2x-3< 0;3x-5< 0;4x-7< 0\)

=>\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=1-x;\left|2x-3\right|=3-2x\\\left|3x-5\right|=5-3x;\left|4x-7\right|=7-4x\end{cases}}\)

Thay vào (1) có :

\(1-x+3-2x+5-3x+7-4x+11x-8=0\)

\(\Leftrightarrow x+8=0\Leftrightarrow x=-8\)( thỏa mãn điều kiện \(x\le\frac{8}{11}\))

Vậy x = - 8

Tích cho mk nhoa !!!! ~~

15 tháng 10 2019

dk \(x\ge0;2x+1\ge0< =>x\ge0\)

2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)

\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>

2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc

\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)

x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\)   hay 5x- 3<2 <=> x<1( vô lý)

x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)

x=1 thỏa mãn

vậy pt có nghiệm duy nhất x=1