Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x^2-21x+23+2\sqrt{x+1}=0\)
\(\Rightarrow-\left(x+1\right)+2\sqrt{x+1}+4x^2-20x+24=0\)
Đặt a = \(\sqrt{x+1}\left(a\ge0\right)\) , ta được pt: -a2 + 2a + 4x2 - 20x + 24 = 0
Có: \(\Delta'=1+4x^2-20x+24=4x^2-20x+25=\left(2x-5\right)^2\Rightarrow\sqrt{\Delta}=2x-5\)
\(\Rightarrow\orbr{\begin{cases}a=6-2x\\a=2x-4\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=6-2x\\\sqrt{x+1}=2x-4\end{cases}}\Rightarrow\orbr{\begin{cases}x+1=\left(6-2x\right)^2\\x+1=\left(2x-4\right)^2\end{cases}}}\)
Tới đây bạn tự giải
a/ PT <=> (x2 - 6x + 9) + (x - \(\sqrt{3x}\)) + (3 - \(\sqrt{3x}\)) = 0
<=> (\(\sqrt{x}-\sqrt{3}\))(\(\sqrt{3}x+x\sqrt{x}-3\sqrt{x}-3\sqrt{3}\)) + √x(\(\sqrt{x}-\sqrt{3}\)) + \(\sqrt{3}\left(\sqrt{3}-\sqrt{x}\right)\)= 0
<=> x = 3
Tự đặt điều kiện :v
\(\Leftrightarrow x^2\sqrt{x^2-4}+2x=0\)
Đặt \(\left(x;\sqrt{x^2-4}\right)=\left(a;b\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a^2b+2a=0\\b^2+4=a^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a\left(ab+2\right)=0\\a^2-b^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\ab+2=0\end{matrix}\right.\\a^2-b^2=4\end{matrix}\right.\)
Tự giải tiếp các TH
bạn giúp mk làm câu này được ko cấu trên mk ghi sai đề .
\(x+\dfrac{2x}{\sqrt{x^2-4}}=3\sqrt{5}\)
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
b/ Xác định điều kiện xác định ta có
\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)
=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm
Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn
\(4x^2-21x+23+2\sqrt{x+1}=0\) (x\(\ge-1\))
\(\Leftrightarrow\left(4x^2-20x+25\right)-\left(x+1+2\sqrt{x+1}+1\right)\)=0
\(\Leftrightarrow\left(2x-5\right)^2=\left(\sqrt{x+1}+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=\sqrt{x+1}+1\\2x-5=-\sqrt{x+1}-1\end{matrix}\right.\) ....
Ta có: \(4x^2-21x+23+2\sqrt{x+1}=0\left(Đkxđ:x\ge-1\right)\)
\(\Leftrightarrow4x^2-21x+23=-2\sqrt{x+1}\)
\(\Leftrightarrow16x^4+441x^2+529-168x^3+184x^2-966x=4\left(x+1\right)\)
\(\Leftrightarrow16x^4-168x^3+625x^2-970x+525=0\)
\(\Leftrightarrow\left(16x^3-120x^2+265x-175\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-\frac{5}{4}\right)\left(16x^2-100x+140\right)=0\)
.............................................................