K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

\(4x^2-12x+5=0\)

\(4\left(x-3\right)x+5=0\)

\(4x^2+5=12x\)

\(\left(2x-5\right)\left(2x-1\right)=0\)

\(\Rightarrow x=\hept{\begin{cases}0,5\\2,5\end{cases}}\)

29 tháng 5 2017

\(\Leftrightarrow\left(4x^2-2x\right)-\left(10x-5\right)=0\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)

20 tháng 1 2016

1/

-x^3 -5x^2 + 4x +4

=> x1 =-5.5877............

    x2=1.1895.............

    x3=-0.6018............

28 tháng 1 2022

\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)

\(\Leftrightarrow5x^3+30x^2+3x+9=0\)

\(\Leftrightarrow x=-5,95...\)

\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)

\(\Leftrightarrow12x^2-47x+26=0\)

<=> (3x - 2)(4x - 13) = 0

<=> x = 2/3 hoặc x = 13/4

c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...

26 tháng 5 2015

mk chỉ làm câu b nha 

 ( x-4)(\(x^2\) +1)=0

=> x -4 = 0 hoạc \(x^2\) +1=0

nếu x-4=0

      => x =4

nếu \(x^2\) +1 =0

      => \(x^2\) = -1 (loại)

vì \(x^2\) luôn > hoặc = 0 với mọi x thuộc R

=> x=4

26 tháng 5 2015

b) (x-4)(x2+1)=0

=> x-4=0 hoặc x2+1=0

     x=0+4 hoặc x2=0-1=-1

     x=4    hoặc => x\(\in\phi\)

 

Vậy x=4

29 tháng 1 2020

a) \(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)

\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)

b) \(x^5-5x^3+4x=0\)

\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)

c) \(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow x-1=0\)

hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)

hoặc \(x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)

6 tháng 2 2018

c)   \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

Đặt      \(x^2+6x+5=t\)   ta có:

                       \(t\left(t+3\right)-40=0\)

          \(\Leftrightarrow\)\(t^2+3t-40=0\)

          \(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)

        \(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)

Thay trở lại ta có:      \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)

(*)     \(x^2+6x=0\)

 \(\Leftrightarrow\)\(x\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

(*)   \(x^2+6x+13=0\)

\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\)  (vô lý)

Vậy......

6 tháng 2 2018

a, <=> (x-1).(x-6) = 0

<=> x=1 hoặc x=6

b, <=> (x+1).(2x-5) = 0

<=> x=-1 hoặc x=5/2

c, <=> (2x-5).(2x-1) = 0

<=> x=5/2 hoặc x=1/2

d, <=> (x^2-x+1).(x^2+1) = 0

=> pt vô nghiệm vì x^2-x+1 và x^2+1 đều > 0

Tk mk nha

6 tháng 2 2018

a) x2 - 7x + 6 = 0

<=> x2 - 6x - x + 6 = 0

<=>( x - 6 ) ( x - 1 ) = 0

<=> x - 6 = 0 hoặc x - 1 = 0

1. x - 6 = 0

<=> x = 6

2. x - 1 = 0

<=> x = 1

Vậy ......

b) 2x2 - 3x - 5 = 0

<=> 2x2 + 2x - 5x - 5 = 0

<=> ( x + 1 ) ( 2x - 5 ) = 0

<=> x + 1 = 0 hoặc 2x - 5 = 0

1. x + 1 = 0

<=> x = -1

2. 2x - 5 = 0

<=> x = 2.5

Vậy ............

c) 4x2 - 12x + 5 = 0

<=> 4x2 - 2x - 10x + 5 = 0

<=> 2x ( 2x - 1 ) - 5( 2x - 1 ) = 0

<=> ( 2x - 1 ) ( 2x - 5 ) = 0

<=> 2x - 1 = 0 hoặc 2x - 5 = 0

1. 2x - 1 = 0

<=> x = 0.5

2. 2x - 5 = 0

<=> x = 2.5

Vậy ....................

d) x4 - x3 + 2x2 - x + 1 = 0

x^4 + 2x^3 + 5x^2 + 4x-12 = 0 
<=> (x^4 - x^3) + (3x^3-3x^2) + (8x^2 - 8x) + (12x-12) = 0 
<=> (x-1).(x^3 + 3x^2 + 8x+12) = 0 
<=> (x-1).[(x^3+2x^2)+(x^2+2x)+(6x+12)] = 0 
<=>(x-1).(x+2).(x^2+x+6) = 0 
<=> x= 1 hoặc x = -2 

24 tháng 1 2019

x- 4x3 + 12x -9 = 0

<=> x4 - x3 - 3x3 + 3x2 - 3x2 + 3x + 9x - 9 = 0

<=> x3(x-1) - 3x2(x-1) - 3x(x-1) + 9(x-1) = 0

<=> (x-1)(x3 - 3x2 - 3x + 9) = 0

<=> (x-1)[x2(x-3) - 3(x-3)] = 0

<=> (x-1)(x-3)(x2 - 3) = 0

=> x-1 = 0 hoặc x - 3= 0 hoặc x2 - 3 = 0

=> x = 1 hoặc x = 3 hoặc x = \(\pm\sqrt{3}\)

Vậy S = ...

24 tháng 4 2021

bạn tự kết luận nhé ! 

a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)

\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)

c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)

d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)

\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )

e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)

\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)

\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)

\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)

Đặt \(144x^2-60x+4=t\)

\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)

\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)

suy ra :TH1 :  \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)

TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)

\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)

21 tháng 2 2018

\(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

\(\Leftrightarrow\left(4x^2-10x\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\) hoặc \(x=\dfrac{1}{2}\)

8 tháng 4 2020

$4x^2-12x+5=0$

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

KL: ................