Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)
\(\Leftrightarrow5x^3+30x^2+3x+9=0\)
\(\Leftrightarrow x=-5,95...\)
\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)
\(\Leftrightarrow12x^2-47x+26=0\)
<=> (3x - 2)(4x - 13) = 0
<=> x = 2/3 hoặc x = 13/4
c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...
mk chỉ làm câu b nha
( x-4)(\(x^2\) +1)=0
=> x -4 = 0 hoạc \(x^2\) +1=0
nếu x-4=0
=> x =4
nếu \(x^2\) +1 =0
=> \(x^2\) = -1 (loại)
vì \(x^2\) luôn > hoặc = 0 với mọi x thuộc R
=> x=4
b) (x-4)(x2+1)=0
=> x-4=0 hoặc x2+1=0
x=0+4 hoặc x2=0-1=-1
x=4 hoặc => x\(\in\phi\)
Vậy x=4
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)
Đặt \(x^2+6x+5=t\) ta có:
\(t\left(t+3\right)-40=0\)
\(\Leftrightarrow\)\(t^2+3t-40=0\)
\(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)
(*) \(x^2+6x=0\)
\(\Leftrightarrow\)\(x\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
(*) \(x^2+6x+13=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\) (vô lý)
Vậy......
a, <=> (x-1).(x-6) = 0
<=> x=1 hoặc x=6
b, <=> (x+1).(2x-5) = 0
<=> x=-1 hoặc x=5/2
c, <=> (2x-5).(2x-1) = 0
<=> x=5/2 hoặc x=1/2
d, <=> (x^2-x+1).(x^2+1) = 0
=> pt vô nghiệm vì x^2-x+1 và x^2+1 đều > 0
Tk mk nha
a) x2 - 7x + 6 = 0
<=> x2 - 6x - x + 6 = 0
<=>( x - 6 ) ( x - 1 ) = 0
<=> x - 6 = 0 hoặc x - 1 = 0
1. x - 6 = 0
<=> x = 6
2. x - 1 = 0
<=> x = 1
Vậy ......
b) 2x2 - 3x - 5 = 0
<=> 2x2 + 2x - 5x - 5 = 0
<=> ( x + 1 ) ( 2x - 5 ) = 0
<=> x + 1 = 0 hoặc 2x - 5 = 0
1. x + 1 = 0
<=> x = -1
2. 2x - 5 = 0
<=> x = 2.5
Vậy ............
c) 4x2 - 12x + 5 = 0
<=> 4x2 - 2x - 10x + 5 = 0
<=> 2x ( 2x - 1 ) - 5( 2x - 1 ) = 0
<=> ( 2x - 1 ) ( 2x - 5 ) = 0
<=> 2x - 1 = 0 hoặc 2x - 5 = 0
1. 2x - 1 = 0
<=> x = 0.5
2. 2x - 5 = 0
<=> x = 2.5
Vậy ....................
d) x4 - x3 + 2x2 - x + 1 = 0
x^4 + 2x^3 + 5x^2 + 4x-12 = 0
<=> (x^4 - x^3) + (3x^3-3x^2) + (8x^2 - 8x) + (12x-12) = 0
<=> (x-1).(x^3 + 3x^2 + 8x+12) = 0
<=> (x-1).[(x^3+2x^2)+(x^2+2x)+(6x+12)] = 0
<=>(x-1).(x+2).(x^2+x+6) = 0
<=> x= 1 hoặc x = -2
x4 - 4x3 + 12x -9 = 0
<=> x4 - x3 - 3x3 + 3x2 - 3x2 + 3x + 9x - 9 = 0
<=> x3(x-1) - 3x2(x-1) - 3x(x-1) + 9(x-1) = 0
<=> (x-1)(x3 - 3x2 - 3x + 9) = 0
<=> (x-1)[x2(x-3) - 3(x-3)] = 0
<=> (x-1)(x-3)(x2 - 3) = 0
=> x-1 = 0 hoặc x - 3= 0 hoặc x2 - 3 = 0
=> x = 1 hoặc x = 3 hoặc x = \(\pm\sqrt{3}\)
Vậy S = ...
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
\(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow\left(4x^2-10x\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\) hoặc \(x=\dfrac{1}{2}\)
$4x^2-12x+5=0$
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
KL: ................
\(4x^2-12x+5=0\)
\(4\left(x-3\right)x+5=0\)
\(4x^2+5=12x\)
\(\left(2x-5\right)\left(2x-1\right)=0\)
\(\Rightarrow x=\hept{\begin{cases}0,5\\2,5\end{cases}}\)
\(\Leftrightarrow\left(4x^2-2x\right)-\left(10x-5\right)=0\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)