\(4^{x+1}+4^{x-1}-2^{x+2}-2^{2-x}-7=0\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Phương trình tương đương với :

           \(4\left(2^{2x}+2^{-2x}\right)-4\left(2^x+2^{-x}\right)-7=0\)

Đặt \(t=2^{2x}+2^{-2x}\) ta có : \(t^2=2^{2x}+2^{-2x}+2\)

Phương trình trở thành :

 \(4\left(t^2-2\right)-4t-7=0\)

\(\Leftrightarrow4t^2-4t-15=0\)

\(\Leftrightarrow t=\frac{5}{2}\) ( thỏa mãn) hoặc \(t=-\frac{3}{2}\) (loại)

Với \(t=\frac{5}{2}\) ta có : \(2^x+2^{-x}=\frac{5}{2}\)

Đặt \(u=2^x,u>0\Rightarrow\frac{1}{u}=2^{-x}\)

Phương trình trở thành : \(u+\frac{1}{u}=\frac{5}{2}\Rightarrow2u^2+5u+2=0\)

                                                     \(\Leftrightarrow\left[\begin{array}{nghiempt}u=2\\u=\frac{1}{2}\end{array}\right.\)

Khi \(u=2\Rightarrow2^x=2\Leftrightarrow x=1\)

Khi \(u=\frac{1}{2}\Rightarrow2^x=\frac{1}{2}\Leftrightarrow x=-1\)

Vậy phương trình có 2 nghiệm : \(x=\pm1\)

30 tháng 3 2017

a) \(4x^2-x+1< 0\)

Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.

Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.


30 tháng 3 2017

b) f(x) = - 3x2 + x + 4 = 0

\(\Delta=1^2-4\left(-3\right).4=49\)

\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)

\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)

- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .



NV
16 tháng 2 2020

a/ ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)

b/ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)

Thay \(x=1\) vào pt thấy ko thỏa mãn

Vậy pt vô nghiệm

d/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)