Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy x = 0 không phải là nghiệm.
Xét x khác 0.Chia hai vế của pt cho x2 ta được:
\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=a\). PT trở thành:
\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)
Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)
Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))
\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)
\(\Leftrightarrow-56x=1\)
\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)
Vậy \(S=\left\{-\frac{1}{56}\right\}\)
ĐKXĐ: x khác -7 và 3/2
Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)
<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7
<=> -13x+6 = 43x+7
<=> 6-7 = 43x+13x
<=> 56x = -1
<=> x = -1/56 (TM)
Vậy ...
\(\Leftrightarrow\left(36x^2+84x+48\right)\left(36x^2+84x+49\right)=72\)
\(\Leftrightarrow t\left(t+1\right)=72\) ( với \(t=36x^2+84x+48\) )
\(\Leftrightarrow t^2+t-72=0\Leftrightarrow\left(t-8\right)\left(t+9\right)=0\)
\(\Leftrightarrow t-8=0\) ( do \(t+9=36x^2+84x+49+8=\left(6x+7\right)^2+8>0\forall x\))
\(\Leftrightarrow36x^2+84x+48=8\)
\(\Leftrightarrow\left(6x+7\right)^2=9\Leftrightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\) ( TM )
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)
\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x-4+\frac{1}{x}=a\)
\(\frac{2}{a}-\frac{7}{a+6}=6\)
\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)
\(\Leftrightarrow6a^2+41a-12=0\)
Nghiệm xấu, bạn coi lại đề
Đặt \(t=2x^2+3x-1\) thì pt trở thành :
\(t\left(t-5\right)=-4\) \(\Leftrightarrow t^2-5t+4=0\)
\(\Leftrightarrow t^2-t-4t+4=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=1\\2x^2+3x-1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(x+2\right)=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-2\\x=-\frac{5}{2}\\x=1\end{matrix}\right.\) ( TM )
\(\Leftrightarrow\left(2x^2+3x-1\right)^2-5\left(2x^2+3x-1\right)+4=0\)
\(\Leftrightarrow\left(2x^2+3x-1-1\right)\left(2x^2+3x-1-4\right)=0\)
\(\Leftrightarrow\left(2x^2+3x-2\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
Bấm máy...
Lời giải:
ĐKXĐ: $x\neq -1; x\neq -2$
PT \(\Leftrightarrow 2(2x^2+6x+4)+2-\frac{10}{x^2+3x+2}=5\)
\(\Leftrightarrow 4(x^2+3x+2)-\frac{10}{x^2+3x+2}-3=0\)
Đặt \(x^2+3x+2=a\). Khi đó PT trở thành:
\(4a-\frac{10}{a}-3=0\)
\(\Rightarrow 4a^2-3a-10=0\)
\(\Leftrightarrow (a-2)(4a+5)=0\Rightarrow \left[\begin{matrix} a-2=0\\ 4a+5=0\end{matrix}\right.\)
Nếu \(a-2=0\Leftrightarrow x^2+3x+2-2=0\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x(x+3)=0\Rightarrow \left[\begin{matrix} x=0\\ x=-3\end{matrix}\right.\)
Nếu \(4a+5=0\Leftrightarrow 4(x^2+3x+2)+5=0\)
\(\Leftrightarrow 4x^2+12x+13=0\)
\(\Leftrightarrow (2x+3)^2=-4< 0\) (vô lý- loại)
Vậy.........
2.a)\(\dfrac{3\text{x}-2}{2}\)=\(\dfrac{1-2\text{x}}{3}\)
<=>\(\dfrac{9\text{x}-6}{6}\)=\(\dfrac{2-4\text{x}}{6}\)
<=>9x-6=2-4x
<=>9x+4x=2+6
<=>13x=8
<=>x=\(\dfrac{8}{13}\)
1.a)2(x-0,5)+3=0,25(4x-1)
<=>2x-1+3=x-1phần4
<=>2x-x=-1/4+1-3
<=>x=-3/4
Xét thấy x = 0 không thỏa mãn pt
Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)
\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)
\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)
Đặt \(x+\frac{1}{x}=a\)
\(pt\Leftrightarrow6a^2-7a-48=0\)
\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)
\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)
\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)
\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)
\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)
\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)
Giải nốt nha bạn. Nghiệm hơi xấu
\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)
Đặt \(3x^2+7x=a\Rightarrow36x^2+84x=12a\)
\(\left(a+4\right)\left(12a+49\right)-6=0\)
\(\Leftrightarrow12a^2+97a+190=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-\frac{10}{3}\\a=-\frac{19}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2+7x+\frac{10}{3}=0\\3x^2+7x+\frac{19}{4}=0\end{matrix}\right.\) \(\Leftrightarrow...\)