K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2015

 

-3x^2 + 4x +4 =0

<=>-3x2-2x+6x+4=0

<=>-x.(3x+2)+2.(3x+2)=0

<=>(3x+2)(2-x)=0

<=>3x+2=0 hoặc 2-x=0

<=>x=-2/3 hoặc x=2

31 tháng 1 2016

khó quá ?????

mik chưa học đến lớp 8 nên ko biết

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

8 tháng 7 2023

3\(x^2\) - 4\(x\) - 4 = 0

3(\(x^2\) - 2. \(\dfrac{2}{3}\)\(x\) + \(\dfrac{4}{9}\)) - \(\dfrac{16}{3}\) = 0

3.(\(x-\dfrac{2}{3}\))2 = \(\dfrac{16}{3}\)

   (\(x-\dfrac{2}{3}\))2 = \(\dfrac{16}{9}\) 

   \(\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{4}{3}\\x-\dfrac{2}{3}=-\dfrac{4}{3}\end{matrix}\right.\)

  \(\left[{}\begin{matrix}x=\dfrac{4}{3}+\dfrac{2}{3}\\x=-\dfrac{4}{3}+\dfrac{2}{3}\end{matrix}\right.\)

  \(\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)

S = { -\(\dfrac{2}{3}\); 2}

9 tháng 7 2023

3x² - 4x - 4 = 0

⇔ 3x² - 6x + 2x - 4 = 0

⇔ (3x² - 6x) + (2x - 4) = 0

⇔ 3x(x - 2) + 2(x - 2) = 0

⇔ (x - 2)(3x + 2) = 0

⇔ x - 2 = 0 hoặc 3x + 2 = 0

*) x - 2 = 0

⇔ x = 2

*) 3x + 2 = 0

⇔ 3x = -2

⇔ x = -2/3

Vậy S = {-2/3; 2}

3 tháng 4 2020

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 } 

19 tháng 1 2018

Bấm cái pt này vào máy tính casio, được nghiệm = -1. => Tách: 
\(x^4+3x^3+4x^2+3x+1= 0 $\)
\(\Leftrightarrow\)\(x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0 \)
\(\Leftrightarrow\)\( x^3(x+1) +2x^2(x+1) + 2x(x+1) +(x+1)=0 \)
\(\Leftrightarrow\) \((x^3+2x^2+2x+1)(x+1)=0\)       (1) 

Đưa cái pt bậc 3 vào máy tính casio (mode-> eqn-> degree 3 hoặc \(ax^3+bx^2+cx+d\)), được 1 nghiệm = -1 
tách như trên: 
\(x^3+2x^2+2x+1=0 \)
\(\Leftrightarrow\)\(x^3+x^2+x^2+x+x+1=0 \)
\(\Leftrightarrow\)\(x^2(x+1) +x(x+1) + (x+1)=0 \)
\(\Leftrightarrow\)\((x^2+x+1)(x+1)=0 \)            (2)
Chứng minh được cái pt bậc 2 vô nghiệm bằng cách ép bình phương cộng với 1 số dương thì lớn hơn 0.    (3) 
Từ (1),(2),(3) => x+1=0 <=> x=-1. 
Kết Luận....

19 tháng 1 2018

phương uyên copy ??? , m chứng minh cái (x^2+x+1) vô nghiệm  đi copy sủa cái cmmm 

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

31 tháng 1 2016

\(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow\)  \(x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\)  \(x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)  \(x^2\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\)  \(^{\left(x-2\right)^2=0}_{x^2-1=0}\)  \(\Leftrightarrow\)  \(^{x-2=0}_{x^2=1}\)  \(\Leftrightarrow\)  \(^{x=2}_{x=^+_-1}\)

Vậy,   \(S=\left\{-1;1;2\right\}\)