Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{3x+1}=a\)
=> pt <=> 4x^2 +a +6=a^2 +12x
chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3
câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp
sau khi chuyển cậu có pt a62-4x^2-a+12x-6=0
=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0
<=> (a+2x-3)(a-2x+2)=0
1 3 x − 1 + 1 2 x + 4 = 1 9 x − 2 + 1 5 − 4 x Đ K : x ≠ 1 3 , x ≠ − 2 , x ≠ 2 9 , x ≠ 5 4
Ta có pt: 5 x + 3 ( 3 x − 1 ) ( 2 x + 4 ) = 5 x + 3 ( 9 x − 2 ) ( 5 − 4 x )
< = > x = − 3 5 ( 3 x − 1 ) ( 2 x + 4 ) = ( 9 x − 2 ) ( 5 − 4 x ) < = > x = − 3 5 6 x 2 + 12 x − 2 x − 4 = − 36 x 2 + 45 x + 8 x − 10 < = > x = − 3 5 ( T M ) x = 6 7 ( T M ) x = 1 6 ( T M )
Vậy phương trình đã có có 3 nghiệm phân biệt như trên.
Lời giải:
ĐK: $x\geq \frac{-1}{3}$. Ta có:
\(4x^2+5+\sqrt{3x+1}=13x\)
\(\Leftrightarrow (4x^2-11x+3)-(2x-2-\sqrt{3x+1})=0(*)\)
TH1: Nếu \(2x-2+\sqrt{3x+1}=0(1)\)
\(\Rightarrow \sqrt{3x+1}=2-2x\Rightarrow \left\{\begin{matrix} x\leq 1\\ 3x+1=(2-2x)^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 1\\ 4x^2-11x+3=0\end{matrix}\right.\Rightarrow x=\frac{11-\sqrt{73}}{8}\) . Thử lại vào PT ban đầu không thấy đúng (loại)
TH2: Nếu $2x-2+\sqrt{3x+1}\neq 0$ (tức là \(x\neq \frac{11-\sqrt{73}}{8}\))
\((*)\Leftrightarrow (4x^2-11x+3)-\frac{(2x-2)^2-(3x+1)}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow (4x^2-11x+3)-\frac{4x^2-11x+3}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \frac{(4x^2-11x+3)(2x-3+\sqrt{3x+1})}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \left[\begin{matrix} 4x^2-11x+3=0\\ 2x-3+\sqrt{3x+1}=0\end{matrix}\right.\)
Nếu $4x^2-11x+3=0\Rightarrow x=\frac{11+\sqrt{73}}{8}$ (loại TH $x=\frac{11-\sqrt{73}}{8}$
Nếu \(2x-3+\sqrt{3x+1}=0\Rightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ (2x-3)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ 4x^2-15x+8=0\end{matrix}\right.\Rightarrow x=\frac{15-\sqrt{97}}{8}\)
Thử lại thấy thỏa mãn. Vậy.........
Lời giải:
ĐK: $x\geq \frac{-1}{3}$. Ta có:
\(4x^2+5+\sqrt{3x+1}=13x\)
\(\Leftrightarrow (4x^2-11x+3)-(2x-2-\sqrt{3x+1})=0(*)\)
TH1: Nếu \(2x-2+\sqrt{3x+1}=0(1)\)
\(\Rightarrow \sqrt{3x+1}=2-2x\Rightarrow \left\{\begin{matrix} x\leq 1\\ 3x+1=(2-2x)^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 1\\ 4x^2-11x+3=0\end{matrix}\right.\Rightarrow x=\frac{11-\sqrt{73}}{8}\) . Thử lại vào PT ban đầu không thấy đúng (loại)
TH2: Nếu $2x-2+\sqrt{3x+1}\neq 0$ (tức là \(x\neq \frac{11-\sqrt{73}}{8}\))
\((*)\Leftrightarrow (4x^2-11x+3)-\frac{(2x-2)^2-(3x+1)}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow (4x^2-11x+3)-\frac{4x^2-11x+3}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \frac{(4x^2-11x+3)(2x-3+\sqrt{3x+1})}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \left[\begin{matrix} 4x^2-11x+3=0\\ 2x-3+\sqrt{3x+1}=0\end{matrix}\right.\)
Nếu $4x^2-11x+3=0\Rightarrow x=\frac{11+\sqrt{73}}{8}$ (loại TH $x=\frac{11-\sqrt{73}}{8}$
Nếu \(2x-3+\sqrt{3x+1}=0\Rightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ (2x-3)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ 4x^2-15x+8=0\end{matrix}\right.\Rightarrow x=\frac{15-\sqrt{97}}{8}\)
Thử lại thấy thỏa mãn. Vậy.........
Lời giải:
$4x^4-13x^2+3=0$
$\Leftrightarrow 4x^2(x^2-3)-(x^2-3)=0$
$\Leftrightarrow (x^2-3)(4x^2-1)=0$
$\Rightarrow x^2-3=0$ hoặc $4x^2-1=0$
$\Leftrightarrow x=\pm \sqrt{3}$ hoặc $x=\pm \frac{1}{2}$
\(4x^2+\sqrt{3x+1}=13x-5\) ĐK : \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow4x^2-13x+5=\sqrt{3x+1}\)
\(\Leftrightarrow\left(2x-3\right)^2=-\sqrt{3x+1}+x+4\)
Đặt \(\sqrt{3x+1}=\left(2y-3\right)\) (ĐK : \(y\le\dfrac{3}{2}\))
\(\Leftrightarrow3x+1=\left(2y-3\right)^2\)
Ta có hệ : \(\left\{{}\begin{matrix}3x+1=\left(2y-3\right)^2\\\left(2x-3\right)^2=2y-3+x+4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^2=2y-3+x+4\\\left(2y-3\right)^2=3x+1\end{matrix}\right.\)
\(\Rightarrow\left(2x-3\right)^2-\left(2y-3\right)^2=2y-2x\)
\(\Leftrightarrow2.\left(x-y\right).\left(2x+2y-6\right)=-2.\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right).\left(2x+2y-6+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-5=0\end{matrix}\right.\)
Với x = y
\(\sqrt{3x+1}=3-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\3x+1=4x^2-12x+9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\4x^2-15x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\\left[{}\begin{matrix}x=\dfrac{15+\sqrt{97}}{8}\left(l\right)\\x=\dfrac{15-\sqrt{97}}{8}\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)
Với \(2x+2y-5=0\Rightarrow2y=5-2x\)
\(\rightarrow\sqrt{3x+1}=2x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x+1=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\4x^2-11x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=\dfrac{11+\sqrt{73}}{8}\left(tm\right)\\x=\dfrac{11-\sqrt{73}}{8}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
câu trả lời của thu hương rất hay!
Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không
hiihhi
Ta viết lại phương trình thành:
\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)
Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:
\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\)
Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)
Trường hợp 1: \(a=b\) ta có:
\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)
Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)
\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)
Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)
ĐKXĐ : \(x\inℝ\)
Ta có : \(\dfrac{x^2+4x+5}{x^2-x+5}-\dfrac{3x}{x^2-3x+5}=1\)
\(\Leftrightarrow1+\dfrac{5x}{x^2-x+5}-\dfrac{3x}{x^2-3x+5}=1\)
\(\Leftrightarrow x.\left(\dfrac{5}{x^2-x+5}-\dfrac{3}{x^2-3x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{5}{x^2-x+5}=\dfrac{3}{x^2-3x+5}\left(1\right)\end{matrix}\right.\)
Phương trình (1) <=> 5(x2 - 3x + 5) = 3(x2 - x + 5)
<=> 2x2 - 12x + 10 = 0
<=> x2 - 6x + 5 = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Tập nghiệm \(S=\left\{0;1;5\right\}\)