Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Đặt \(2^x-8=u;4^x+13=v\)
Phương trình trở thành \(u^3+v^3=\left(u+v\right)^3\)
\(\Rightarrow u^3+v^3=u^3+3uv\left(u+v\right)+v^3\)
\(\Rightarrow3uv\left(u+v\right)=0\)
*) \(u=0\Rightarrow2^x-8=0\Rightarrow x=3\)
\(v=0\Rightarrow4^x=-13\)(không tồn tại nghiệm thực)
\(u+v=0\Rightarrow2^x+4^x=-5\)(không tồn tại nghiệm thực)
Vậy nghiệm duy nhất của phương trình là 3
\(\frac{x-5}{3}< \frac{x-8}{4}\Rightarrow4.\left(x-5\right)< 3.\left(x-8\right)\Rightarrow4x-20< 3x-24\Rightarrow x< -4\)
a) \(\frac{x-5}{3}< \frac{x-8}{4}\)
<=> \(\frac{4\left(x-5\right)}{12}< \frac{3\left(x-8\right)}{12}\)
<=> \(4\left(x-5\right)< 3\left(x-8\right)\)
<=> \(4x-20< 3x-24\)
<=> \(4x-3x< 20-24\)
<=> \(x< -4\)
Vậy bất phương trình có tập nghiệm là { x l x < -4 }
b) \(\frac{x+3}{4}+1< x+\frac{x+2}{3} \)
<=> \(\frac{3\left(x+3\right)}{12}+\frac{12}{12}< \frac{12x}{12}+\frac{4\left(x+2\right)}{12}\)
<=> \(3\left(x+3\right)+12< 12x+4\left(x+2\right)\)
<=> \(3x+9+12< 12x+4x+8\)
<=> \(3x-12x-4x< 8-9-12\)
<=> \(-13x< -13\)
<=> \(x>1\)
Vậy bất phương trình có tập nghiệm là { x l x > 1 }
\(x^8-x^7+x^5-x^4+x^3-x+1=0\)
\(\Rightarrow x^8-x^7+x^5-x^4+x^3-x^2+x^2-x+1=0\)
\(\Rightarrow x^7\left(x-1\right)+x^4\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(x^7+x^4+x^2+x\right)=-1\)
Lập bảng là tìm được \(S\in\left\{2;0\right\}\)
\(a,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+1\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(7-5x\right)=0\)
\(\Leftrightarrow x-1=0;x+2=0\)hoặc \(7-5x=0\)
\(\Leftrightarrow x=1;x=-2\)hoặc \(x=\frac{7}{5}\)
KL....
\(b,\left(5x^2-2x+10\right)^2=\left(x^2+10x-8\right)^2\)
\(\Leftrightarrow\left(5x^2-2x+10\right)^2-\left(x^2+10x-8\right)^2=0\)
\(\Leftrightarrow\left(5x^2-2x+10-x^2-10x+8\right)\left(5x^2-2x+10+x^2+10x-8\right)=0\)
\(\Leftrightarrow\left(4x^2-12x+18\right)\left(6x^2+8x+2\right)=0\)
\(\Leftrightarrow\left(x^2-3x+\frac{9}{2}\right)\left(6x^2+6x+2x+2\right)=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{9}{4}\right)\left(6x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\right]\left(3x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-1\end{cases}}\)Vì \(\left(x-\frac{3}{2}\right)^2+\frac{9}{4}>0\forall x\)
Vậy ..
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
ta có:
\(\frac{x+2}{2013}+\frac{x+5}{2010}>\frac{x+8}{2007}+\frac{x+11}{2004}\)
\(\Leftrightarrow\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+5}{2010}+1\right)>\left(\frac{x+8}{2007}+1\right)+\left(\frac{x+11}{2004}+1\right)\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}>\frac{x+2015}{2007}+\frac{x+2015}{2004}\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}-\frac{x+2015}{2007}-\frac{x+2015}{2004}>0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}\right)>0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
Vậy phương trình có nghiệm x = 5.