Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
ĐK: \(x\in\mathbb{R}\)
\(\sqrt{x^2-2x+5}=x^2-2x-1=x^2-2x+5-6\)
Đặt \(\sqrt{x^2-2x+5}=t(t\geq 0)\). PT trở thành:
\(t=t^2-6\)
\(\Leftrightarrow t^2-t-6=0\Leftrightarrow (t-3)(t+2)=0\)
\(\Leftrightarrow \left[\begin{matrix} t=3\\ t=-2\end{matrix}\right.\). Vì $t\geq 0$ nên $t=3$
Do đó: \(\sqrt{x^2-2x+5}=3\Rightarrow x^2-2x+5=9\)
\(\Rightarrow x^2-2x-4=0\Rightarrow x=1\pm \sqrt{5}\)
Vậy........
Câu 2:
ĐK: \(x\in\mathbb{R}\)
Ta có: \(x^2-4x-6=\sqrt{2x^2-8x+12}\)
\(\Rightarrow 2x^2-8x-12=2\sqrt{2x^2-8x+12}\)
\(\Leftrightarrow (2x^2-8x+12)-24-2\sqrt{2x^2-8x+12}=0\)
Đặt \(\sqrt{2x^2-8x+12}=t(t\geq 0)\). PT trở thành:
\(t^2-24-2t=0\)
\(\Leftrightarrow (t-6)(t+4)=0\Rightarrow \left[\begin{matrix} t=6\\ t=-4\end{matrix}\right.\)
Mà \(t\geq 0\Rightarrow t=6\)
Do đó: \(\sqrt{2x^2-8x+12}=6\Rightarrow 2x^2-8x+12=36\)
\(\Rightarrow x^2-4x-12=0\Rightarrow \left[\begin{matrix} x=6\\ x=-2\end{matrix}\right.\)
Vậy...........
\(vt=\sqrt{-\left(x-2\right)^2+2}+\sqrt{-2\left(x-2\right)^2+3}\)
=>\(VT=< \sqrt{2}+\sqrt{3}\)
xảy ra dấu = khi và chỉ khi x=2
a/ ĐKXĐ: ....
\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)
\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: ....
\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)
\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)
\(2x^2-8x-3\sqrt{x^2-4x-5}=12\) (Điều kiện xác định : \(\hept{\begin{cases}x\le2-\sqrt{10}\\x\ge5\end{cases}}\))
\(\Leftrightarrow2\left(x^2-4x-5\right)-3\sqrt{x^2-4x-5}-2=0\)
Đặt \(t=\sqrt{x^2-4x-5},t\ge0\) , phương trình trên trở thành : \(2t^2-3t-2=0\Leftrightarrow\left(t-2\right)\left(2t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\left(\text{nhận}\right)\\t=-\frac{1}{2}\left(\text{loại}\right)\end{cases}}\)
Với t = 2 ta có phương trình \(x^2-4x-5=4\Leftrightarrow x^2-4x-9=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{13}\left(\text{nhận}\right)\\x=2-\sqrt{13}\left(\text{nhận}\right)\end{cases}}\)
Kết luận : Tập nghiệm của phương trình : \(S=\left\{2-\sqrt{13};2+\sqrt{13}\right\}\)