Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-8}{6}-\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)
\(\Leftrightarrow\frac{4\left(2x-8\right)}{24}-\frac{6\left(3x+1\right)}{24}=\frac{3\left(9x-2\right)}{24}+\frac{2\left(3x-1\right)}{24}\)
\(\Leftrightarrow\frac{8x-32}{24}-\frac{18x+6}{24}=\frac{27x-6}{24}+\frac{6x-2}{24}\)
\(\Leftrightarrow8x-32-18x-6=27x-6+6x-2\)
\(\Leftrightarrow8x-18x-27x-6x=-6-2+32+6\)
\(\Leftrightarrow-42x=30\)
\(\Leftrightarrow x=-\frac{5}{7}\)
Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:
\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)
Đặt \(3x-5+\frac{2}{x}=a\)
\(\frac{2}{a}+\frac{13}{a+6}=6\)
\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)
\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)
Đặt \(t=2x^2+3x-1\) thì pt trở thành :
\(t\left(t-5\right)=-4\) \(\Leftrightarrow t^2-5t+4=0\)
\(\Leftrightarrow t^2-t-4t+4=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=1\\2x^2+3x-1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(x+2\right)=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-2\\x=-\frac{5}{2}\\x=1\end{matrix}\right.\) ( TM )
\(\Leftrightarrow\left(2x^2+3x-1\right)^2-5\left(2x^2+3x-1\right)+4=0\)
\(\Leftrightarrow\left(2x^2+3x-1-1\right)\left(2x^2+3x-1-4\right)=0\)
\(\Leftrightarrow\left(2x^2+3x-2\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
Bấm máy...
\(\left(x^2+1\right)+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)+2.1,5x.\left(x^2+1\right)+\left(1,5x\right)^2-0,25x^2=0\)
\(\Leftrightarrow\left(x^2+1,5x+1\right)^2-\left(0,5x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1,5x+1-0,5x\right)\left(x^2+1,5x+1+0,5x\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+\frac{1}{4}+\frac{3}{4}=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình là x = -1.
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)
\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x-4+\frac{1}{x}=a\)
\(\frac{2}{a}-\frac{7}{a+6}=6\)
\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)
\(\Leftrightarrow6a^2+41a-12=0\)
Nghiệm xấu, bạn coi lại đề
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(x=0\) không phải nghiệm, pt tương đương:
\(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)
Đặt \(x+2+\frac{2}{x}=a\)
\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)
\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2+\frac{2}{x}=1\\x+2+\frac{2}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow\left(2x-3+\frac{1}{x}\right)\left(2x+5+\frac{1}{x}\right)=9\)
Đặt \(2x-3+\frac{1}{x}=a\)
\(a\left(a+8\right)=9\)
\(\Leftrightarrow a^2+8a-9=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-3+\frac{1}{x}=1\\2x-3+\frac{1}{x}=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x+1=0\\2x^2+6x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)