Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\sqrt{3x^2-2x-1}=a; 2x=b(a\geq 0)\)
\(\Rightarrow b^2-a^2=x^2+2x+1\)
PT đã cho trở thành:
\(b^2+1=a+b\sqrt{b^2-a^2+1}\)
\(\Leftrightarrow (b^2-b\sqrt{b^2-a^2+1})+(1-a)=0\)
\(\Leftrightarrow b(b-\sqrt{b^2-a^2+1})-(a-1)=0(*)\)
Nếu \(b+\sqrt{b^2-a^2+1}=0\)
\(\Rightarrow \left\{\begin{matrix} b\leq 0\\ b^2=b^2-a^2+1\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b\leq 0\\ a^2-1=0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ 3x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-\sqrt{7}}{3}\) (thử lại thấy không thỏa mãn)
Nếu \(b+\sqrt{b^2-a^2+1}\neq 0\) thì:
\((*)\Leftrightarrow b.\frac{a^2-1}{b+\sqrt{b^2-a^2+1}}-(a-1)=0\)
\(\Leftrightarrow (a-1)\left(\frac{b(a+1)}{b+\sqrt{b^2-a^2+1}}-1\right)=0\)
\(\Leftrightarrow (a-1).\frac{ba-\sqrt{b^2-a^2+1}}{b+\sqrt{b^2-a^2+1}}=0\)
\(\Rightarrow \left[\begin{matrix} a=1(1)\\ ba=\sqrt{b^2-a^2+1}(2)\end{matrix}\right.\)
Với (1): \(\Rightarrow a^2=1\Rightarrow 3x^2-2x-2=0\Rightarrow x=\frac{1\pm \sqrt{7}}{3}\) . Thử lại chỉ thấy \(x=\frac{1+\sqrt{7}}{3}\) thỏa mãn
Với (2): \(\Rightarrow b^2a^2=b^2-a^2+1\Rightarrow a^2(b^2+1)-(b^2+1)=0\)
\(\Rightarrow (b^2+1)(a^2-1)=0\Rightarrow a^2=1\) (giống như trên ta chỉ thu được \(x=\frac{1+\sqrt{7}}{3}\) )
Vậy..........
b: ĐKXĐ: x>=-1
\(\sqrt{x+1}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+1\right)^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\cdot x=0\\x>=-1\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1\right\}\)
c: \(\sqrt{x-1}=1-x\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\1-x< =0\end{matrix}\right.\Leftrightarrow x=1\)
Do đó: x=1 là nghiệm của phương trình
d: \(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)(ĐKXĐ: x<>1)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)+4=x^2+3\)
\(\Leftrightarrow2x^2-2x+3x-3+4-x^2-3=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>x=-2(nhận) hoặc x=1(loại)
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
pt đã cho \(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+x-1=-\left(2x+3\right)\)
\(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+3x+2=0\)
Đặt \(t=\sqrt{x^2+x+2}\left(t\ge0\right)\) pt trở thành
\(t^2-\left(2x+3\right)t+x^2+3x+2=0\) (*)
pt (*) có biệt thức \(\Delta=\left(2x+3\right)^2-4\left(x^2+3x+2\right)=1\)
\(t_1=\frac{2x+3+1}{2}=x+2\) \(\Leftrightarrow\begin{cases}x\ge-2\\\sqrt{x^2+x+2}=x+2\end{cases}\Leftrightarrow x=-\frac{2}{3}}\)
\(t_2=\frac{2x+3-1}{2}=x+1\)
\(\Leftrightarrow\begin{cases}x\ge-1\\\sqrt{x^2+x+2}=x+1\end{cases}\Leftrightarrow x=1}\)
x=1
x=-0,(6)