![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(3x^2+2x-1=0\)
Nhận thấy: a-b+c=1 nên pt có nghiệm \(\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy .............
2/ \(3x^2+4x-4=0\)
\(\Leftrightarrow x\left(3x-2\right)+2\left(3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy ....................
3/ \(x^2+\left(x+2\right)\left(11x-7\right)=0\Leftrightarrow x^2+11x^2+15x-14=0\)
\(\Leftrightarrow12x^2+15x-14=0\)
\(\Delta=15^2-4.12.\left(-14\right)=897\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{-15+\sqrt{897}}{24}\\x=\frac{-15-\sqrt{897}}{24}\end{matrix}\right.\)
Vậy ................
3x^2 + 2x - 1 = 0
=> 2x^2 + 2x + x^2 - 1 = 0
=> 2x. (x + 1) + (x + 1).(x - 1) = 0
=> ( x+1). ( 3x - 1) = 0
TH1: x+1=0 => x = - 1
TH2: 3x - 1 =0 => x =1/3
Vậy.....
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)
\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)
\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)
\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)
Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)
Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)
V...\(S=\varnothing\)
\(b.4^x-12.2^x+32=0\)
\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)
\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
V...\(S=\left\{2;3\right\}\)
^^ đúng ko ta
a) (x+1)(x+2)(x+5)(x+6)-60=0
[(x+1)(x+6)][(x+2)(x+5)]-60=0
(x^2 + 7x + 6)(x^2 + 7x + 10) - 60 = 0
đặt t = x^2 + 7x + 8
pt trở thành
(t-2)(t+2)-60=0
t^2 - 64=0 .....
t=8 hoặc t=-8.
tìm x ....
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\Leftrightarrow\frac{1-x+3x+3-2x-3}{x+1}=\frac{1}{x+1}=0\)
Vô nghiệm.
\(B=\left(5,5-11x\right)\left(\frac{7x+2}{5}+\frac{2\left(1-3x\right)}{3}\right)=0\)
\(\left[\begin{matrix}5,5-11x=0\\3\left(7x+2\right)+10-30x=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{5,5}{11}\\-9x+16=0\end{matrix}\right.\)\(\left[\begin{matrix}x=\frac{1}{2}\\x=\frac{16}{9}\end{matrix}\right.\)
b) (5,5-11x)(\(\frac{7x+2}{5}\)+ \(\frac{2\left(1-3x\right)}{3}\)) = 0
<=> (5,5 - 11x )(\(\frac{-9x+16}{15}\))=0
<=>\(\left[\begin{matrix}5,5-11x=0\\\frac{-9x+16}{15}=0\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=\frac{1}{2}\\x=\frac{16}{9}\end{matrix}\right.\)
Vậy pt có nghiệm là x=\(\frac{1}{2}\) và x= \(\frac{16}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^4+3x^3+8x^2+6x+5=0\)
\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)
\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)
Vậy tập nghiệm của pt là \(S=\varnothing\)
b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)
\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow x-357=0\Leftrightarrow x=357\)
Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(6x^2-11x+3=0\)
\(\Leftrightarrow6x^2-2x-9x+3=0\)
\(\Leftrightarrow2x\left(3x-1\right)-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\3x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
b)
\(x^3+2x^2-x-2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x-2=0\)
Ta có \(\Delta=2^2+4.2=12\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-2+\sqrt{12}}{2}=\sqrt{3}-1\\x=-\sqrt{3}-1\end{cases}}\)
\(2x^2-11x+19=0\Leftrightarrow2\left(x^2-\frac{11}{2}x+\frac{19}{2}\right)=0\Leftrightarrow x^2-\frac{11}{2}x+\frac{19}{2}=0\)
\(x^2-2.\frac{11}{4}.x+\frac{121}{16}+\frac{31}{16}=0\Leftrightarrow\left(x-\frac{11}{4}\right)^2+\frac{31}{16}=0\)
Vì \(\left(x-\frac{11}{4}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{11}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}>0\forall x\)
Vậy phương trình vô nghiệm