Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7

(Bài này mình sẽ trình bày theo cách khác, không tính cụ thể VT, VP mà thay trực tiếp giá trị vào bất phương trình.)
Lần lượt thay x = -2 vào từng bất phương trình:
a) -3x + 2 > -5 => -3(-2) + 2 > -5
=> 6 + 2 > - 5 => 8 > -5 (đúng)
Vậy x = -2 là nghiệm của bất phương trình này.
b) 10 - 2x < 2 => 10 - 2.(-2) < 2
=> 10 + 4 < 2 => 14 < 2 (sai)
Vậy x = -2 không là nghiệm của bất phương trình này.
c) x2 - 5 < 1 => (-2)2 - 5 < 1
=> 4 - 5 < 1 => -1 < 1 (đúng)
Vậy x = -2 là nghiệm của bất phương trình này.
d) |x| < 3 => |-2| < 3 => 2 < 3 (đúng)
Vậy x = -2 là nghiệm của bất phương trình này.
e) |x| > 2 => |-2| > 2 => 2 > 2 (sai)
Vậy x = -2 không là nghiệm của bất phương trình này.
f) x + 1 > 7 - 2x => (-2) + 1 > 7 - 2(-2) => -1 > 11 (sai)
Vậy x = - 2 không là nghiệm của bất phương trình này.
a) -3x + 2 > -5 => -3(-2) + 2 > -5
=> 6 + 2 > - 5 => 8 > -5 (đúng)
Vậy x = -2 là nghiệm của bất phương trình này.
b) 10 - 2x < 2 => 10 - 2.(-2) < 2
=> 10 + 4 < 2 => 14 < 2 (sai)
Vậy x = -2 không là nghiệm của bất phương trình này.
c) x\(^2\) - 5 < 1 => (-2)\(^2\)- 5 < 1
=> 4 - 5 < 1 => -1 < 1 (đúng)
Vậy x = -2 là nghiệm của bất phương trình này.
d) |x| < 3 => |-2| < 3 => 2 < 3 (đúng)
Vậy x = -2 là nghiệm của bất phương trình này.
e) |x| > 2 => |-2| > 2 => 2 > 2 (sai)
Vậy x = -2 không là nghiệm của bất phương trình này.
f) x + 1 > 7 - 2x => (-2) + 1 > 7 - 2(-2) => -1 > 11 (sai)
Vậy x = - 2 không là nghiệm của bất phương trình này.

1) \(-1\le x\le3\) \(\Rightarrow\) \(x+1\ge0;\) \(x-3\le0\)
\(\Rightarrow\)\(\left|x+1\right|=x+1;\) \(\left|x-3\right|=3-x\)
Phương trình trở thành: \(x+1-\left(3-x\right)=x+12\)
\(\Leftrightarrow\)\(x+1-3+x=x+12\)
\(\Leftrightarrow\) \(2x-2=x+12\)
\(\Leftrightarrow\) \(x=14\) (loại)
Vậy pt vô nghiệm
2) \(x^2+8>0\) \(\forall x\)
\(\Rightarrow\)\(\left|x^2+8\right|=x^2+8\)
Nếu \(x^2-8x< 0\)\(\Leftrightarrow\)\(x\left(x-8\right)< 0\)\(\Leftrightarrow\)\(0< x< 8\)
thì \(\left|x^2-8x\right|=8x-x^2\)
Khi đó phương trình trở thành: \(8x-x^2=x^2+8\)
\(\Leftrightarrow\)\(2x^2-8x+8=0\)
\(\Leftrightarrow\) \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\) \(x=2\) (thỏa mãn)
Nếu \(x^2-8x\ge0\) \(\Leftrightarrow\) \(x\left(x-8\right)\ge0\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge8\\x\le0\end{cases}}\)
thì \(\left|x^2-8x\right|=x^2-8x\)
Khi đó phương trình trở thành: \(x^2-8x=x^2+8\)
\(\Leftrightarrow\)\(-8x=8\)
\(\Leftrightarrow\) \(x=-1\) (thỏa mãn)
Vậy pt có tập nghiệm \(S=\left\{-1;2\right\}\)

b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)
=> \(6x-4\ge5x+8\)
=> \(x-12\ge0\)
=> \(x\ge12\)
bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)
=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)
=> \(44-8x>18-6x\)
=> \(x< 13\)
Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)

a) chưa học :v
b) \(\frac{x-1}{x-3}>2\)ĐKXĐ : \(x\ne3\)
\(\Leftrightarrow x-1>2\left(x-3\right)\)
\(\Leftrightarrow x-1>2x-6\)
\(\Leftrightarrow x-1-2x+6>0\)
\(\Leftrightarrow-x+5>0\)
\(\Leftrightarrow x>5\)( thỏa mãn ĐKXĐ )
Vậy....
a) Dùng bảng xét dấu xem sao (tự lập):v
+)Với \(x< -\frac{3}{2}\);phương trình trở thành:
\(x+3=x-1\Leftrightarrow0=-4\) (vô lí,loại)
+)Với \(-\frac{3}{2}\le x< 0\);phương trình trở thành:
\(-3x-3=x-1\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\) (t/m)
+)Với \(x\ge0\);phương trình trở thành:
\(-x-3=x-1\Leftrightarrow2x=-2\Leftrightarrow x=-1\) (loại)
Vậy tập hợp nghiệm của phương trình: \(x=\left\{-\frac{1}{2}\right\}\)

a)|x+6|>=0 => 2x>=0 => x>=0 => x+6>=6>0 => |x+6|=x+6
=> x+6=2x=> x=6(thỏa mãn)
b)tương tự có được x=-3(thỏa mãn)
a) \(|9+x|=2x\)
\(\Leftrightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}\Leftrightarrow\orbr{\begin{cases}9=2x-x\\9=-2x+x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=-9\end{cases}}}\)
b) \(|x+6|=2x+9\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=2x+9\\x+6=-2x-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=9-6\\x+2x=-9-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=3\\3x=-15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)

1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

a) ta có
|9+x| = 9+x thì 9+x ≥ 0 ⇔ x ≥ -9
|9+x|=-(9-x)thì 9+x <0 ⇔ x<-9
th1 với x ≥ -9
9+x=2x
⇔ 9=2x-x
⇔ 9=x (tmđk)
th2 với x < -9
-(9+x)=2x
⇔ -9-x=2x
⇔ -x-2x=9
⇔ -3x=9
⇔ x=-2 (ktm)
vậy phương trình có tập nghiệm là S+{ 9}
b) Với : x < -6 , phương trình có dạng :
- x - 6 = 2x + 9
<=> -3x = 15
<=> x = - 5 ( không thỏa mãn )
Với : x ≥ - 6 , phương trình có dạng :
x + 6 = 2x + 9
<=> x = - 3 ( thỏa mãn)
Vậy , phương trình nhận : x = - 3 làm nghiệm duy nhất
c) Với : x < 0 , phương trình có dạng :
- 5x = 3x - 2
<=> -8x = -2
<=> x = \(\dfrac{1}{4}\) ( không thỏa mãn )
Với : x ≥ 0 , phương trình có dạng :
5x = 3x - 2
<=> 2x = -2
<=> x = -1 ( không thỏa mãn )
Vậy, phương trình đã cho vô nghiệm

a) x - 5 > 3
⇔ x > 3 + 5 (chuyển -5 từ vế trái sang vế phải và đổi dấu thành 5)
⇔ x > 8
Vậy nghiệm của bất phương trình là x > 8.
b) x - 2x < -2x + 4 ⇔ x - 2x + 2x < 4 ⇔ x < 4
Vậy nghiệm của bất phương trình là x < 4.
c) -3x > -4x + 2 ⇔ -3x + 4x > 2 ⇔ x > 2
Vậy nghiệm của bất phương trình là x > 2.
d) 8x + 2 < 7x - 1 ⇔ 8x - 7x < -1 - 2 ⇔ x < -3
Vậy nghiệm của bất phương trình là x < -3.
nếu \(x< -\dfrac{1}{2}\) thì \(\left|2x+1\right|=-2x-1\\ \left|x-2\right|=2-x\)
nếu \(-\dfrac{1}{2}\le x< 2\) thì \(\left|2x+1\right|=2x+1\\ \left|x-2\right|=2-x\)
nếu \(x\ge2\) thì \(\left|2x+1\right|=2x+1\\ \left|x-2\right|=x-2\)
từ 3 điều kiện trên, ta có:
\(\left[{}\begin{matrix}-2x-1=2-x+5\left(x< -\dfrac{1}{2}\right)\\2x+1=2-x+5\left(-\dfrac{1}{2}\le x< 2\right)\\2x+1=x-2+5\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\left(\text{nhận}\right)\\x=2\left(loại\right)\\x=3\left(\text{nhận}\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={-8;3}