\(\sqrt{2x-1}\)=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018
2x-1+2√(2x-1)+1+√(2x-1)-5=0 đk:2x-1≥0<=>x≥1/2 Với x≥1/2 ta có pt <=>[√(2x-1)+1]^2 +√(2x-1)-5=0 Đặt √(2x-1)=a ta được (a+1)^2+a -5=0 a^2 +2a+1+a-5=0 a^2 +3a-4=0 (a^2 +4a)-(a+4)=0 (a+4)(a-1)=0 =>√(2x-1)+4=0hoặc√(2x-1)=0 <=>√(2x-1)=-4(vô lí) Hoặc √(2x-1)=1 =>2x-1=1 <=>2x=2<=>x=1(t/m) Vậy pt đã cho có 1nghiệm là x=1
15 tháng 7 2019

\(2x-3\sqrt{2x-1}-5=0\)

<=> \(-3\sqrt{2x-1}-5=0-2x\)

<=> \(-3\sqrt{2x-1}-5=-2x\)

<=> \(-3\sqrt{2x-1}=-2x+5\)

<=> \(\left(-3\sqrt{2x-1}\right)^2=\left(-2x+5\right)^2\)

<=> 18x - 9 = 4x2 - 20 + 25

<=> \(\orbr{\begin{cases}x=\frac{17}{2}\left(\text{thỏa mãn}\right)\\x=1\left(\text{loại}\right)\end{cases}}\)

=> x = 17/2

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Thay giá trị này của t vào phương trình (1) ta được :

\(3-2x=\dfrac{11-\sqrt{21}}{2}\)

Vậy :

\(x=\dfrac{\sqrt{21}-5}{4}\)

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



22 tháng 9 2016

\(x\in\left(0;\infty\right)\)

\(x^2-\sqrt{2^3\sqrt{x^3}}+2x-4=0\)

\(x-\sqrt{5}-3=0\)

\(\sqrt{5}+3\)

\(\Rightarrow x=\sqrt{5}+3\)

22 tháng 9 2016

Ta có PT <=> \(\left(x-\sqrt{2x-1}\right)^2-2=0\)

,<=> \(\orbr{\begin{cases}x-\sqrt{2x-1}=\sqrt{2}\\x-\sqrt{2x-1}=-\sqrt{2}\end{cases}}\)

chuyển vế bình phương 2 vế giả tiếp là ra

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................