Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x-18\right)=\frac{75}{25}\)
\(x-18=3\)
\(x=21\)
b) \(\left(27x+6\right):3.11=9\)
\(\left(27x+6\right):3=\frac{9}{11}\)
\(\left(27x+6\right)=\frac{27}{11}\)
\(27x=\frac{27}{11}-6=-\frac{39}{11}\)
\(x=-\frac{39}{11}:27=-\frac{39}{297}=-\frac{13}{99}\)
c) \(\left(15-6x\right).3^5=3^6\)
\(15-6x=3^6:3^5=3\)
\(15-3=6x\)
\(12=6x=>x=2\)
a, \(x^2\) = \(x^3\)
\(x^3\) - \(x^2\) = 0
\(x^2\)( \(x\) -1) = 0
\(\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x\) \(\in\) { 0; 1}
e, 32\(x+1\) = 27
\(3^{2x}\)+1 = 33
2\(x\) + 1 = 3
2\(x\) = 2
\(x\) = 1
g, 62 = 6\(x-3\)
2 = \(x-3\)
\(x\) = 3 + 2
\(x\) = 5
\(a,x^2=x^3\\ \Rightarrow x^2-x^3=0\\ \Rightarrow x^2\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\1-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(b,3^{2x+1}=27\\ \Rightarrow3^{2x+1}=3^3\\ \Rightarrow2x+1=3\\ \Rightarrow2x=3-1\\ \Rightarrow2x=2\\ \Rightarrow x=2:2\\ \Rightarrow x=1\)
\(c,6^2=6^{x-3}\\ \Rightarrow6^{x-3}=6^2\\ \Rightarrow x-3=2\\ \Rightarrow x=2+3\\ \Rightarrow x=5\)
b) \(\left(-x+7\right)^3=-27\)
\(\left(-x+7\right)^3=\left(-3\right)^3\)
\(\Rightarrow-x+7=-3\)
\(\Rightarrow-x=-3-7=-10\)
\(\Rightarrow x=10\)
b) \(\left|x+3\right|\left(x-7\right)< 0\)
Ta có: \(\left|x+3\right|\ge0\)
Mà theo đề bài\(\left|x+3\right|\left(x-7\right)< 0\)
Nên \(x-7< 0\)
\(\Rightarrow x< 7\)
a) \(\left(\frac{17}{2}-2x\right)\frac{1}{3}=7\frac{1}{3}\)
\(\left(\frac{17}{2}-2x\right)\frac{1}{3}=\frac{22}{3}\)
\(\frac{17}{2}-2x=\frac{22}{3}:\frac{1}{3}\)
\(\frac{17}{2}-2x=\frac{22}{3}.\frac{1}{3}\)
\(\frac{17}{2}-2x=22\)
\(2x=\frac{17}{2}-22\)
\(2x=-\frac{27}{2}\)
\(x=-\frac{27}{2}:2\)
\(x=-\frac{27}{4}\)
`27 - 7(x-3) = 6`
`=> 7(x-3) = 27 - 6`
`=> 7(x-3) = 21`
`=> x - 3 = 21 : 7`
`=> x - 3 = 3`
`=> x = 3+3`
`=> x = 6`
\(27-7.\left(x-3\right)=6\\ \Rightarrow7.\left(x-3\right)=27-6\\ \Rightarrow7.\left(x-3\right)=21\\ \Rightarrow x-3=21:7\\ \Rightarrow x-3=3\\ \Rightarrow x=3+3\\ \Rightarrow x=6\)
Vậy \(x=6\)