K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\ne-1\)

\(\dfrac{1}{x+1}-\dfrac{x}{x^2-x+1}=\dfrac{3}{x^3+1}\)

=>\(\dfrac{1}{x+1}-\dfrac{x}{x^2-x+1}=\dfrac{3}{\left(x+1\right)\left(x^2-x+1\right)}\)

=>\(\dfrac{x^2-x+1-x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{\left(x+1\right)\left(x^2-x+1\right)}\)

=>\(x^2-x+1-x^2-x=3\)

=>-2x+1=3

=>-2x=2

=>x=-1(loại)

vậy: \(x\in\varnothing\)

9 tháng 9 2021

\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

23 tháng 9 2021

\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+7}{4-x}\left(x>0;x\ne4\right)\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\\ P=\dfrac{\sqrt{x}+6-x-x-3\sqrt{x}-2+2\sqrt{x}+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x+11}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}\left(x-4\right)}\)

\(P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+x\sqrt{x}-4\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\\ P=\dfrac{-x\sqrt{x}+8\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\)

\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+7}{x-4}\right)\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\)

\(=\dfrac{-x+8\sqrt{x}-15+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{-x+8\sqrt{x}-15+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

24 tháng 9 2021

\(ĐK:x\ge0;x\ne4\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}-5\right)+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{8\sqrt{x}-15-x+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

\(C=\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{1}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

20 tháng 8 2021

Yêu cầu đề?

20 tháng 8 2021

m mem đề đâu 

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

4 tháng 9 2021

a, ĐK: \(x>0\)

\(\dfrac{x-5\sqrt{x}}{x+3\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)

4 tháng 9 2021

b, ĐK: \(x\ge0;x\ne1\)

\(\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)