K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

Điều kiện xác định:

Xét x = 1: VT (2) = 1; VP (2) = 2.

Vậy x = 1 không phải nghiệm của (2) nên phương trình (2) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

7 tháng 5 2016

Phương trình đã cho tương đương với : 

\(\left(2^{2^x}-2^{x+1}\right)+\left(3^{2^x}-3^{x+1}\right)=x+1-2^x\)

Ta xét các trường hợp sau :

* Nếu \(2^x>x+1\) thì \(2^{2^x}-2^{x+1}>0;3^{2^x}-3^{x+1}>0;x+1-2^x< 0\) nên phương trình đã cho không thỏa mãn.

* Nếu \(2^x< x+1\) thì \(2^{2^x}-2^{x+1}< 0;3^{2^x}-3^{x+1}< 0;x+1-2^x>0\) nên phương trình đã cho không thỏa mãn.

* Nếu \(2^x=x+1\) thì phương trình đã cho thỏa mãn và khi đó nghiệm của nó cũng là nghiệm của \(2^x=x+1\)

Xét hàm số \(f\left(t\right)=2^t-\left(t+1\right)\) ta thấy \(f'\left(t\right)=2^t.\ln2-1;f"\left(t\right)=2^t\left(\ln2\right)^2>0\) nên phương trình  có không quá 2 nghiệm phân biệt

Ta lại thấy \(f\left(0\right)=f\left(1\right)=0\) nên phương trình \(f\left(t\right)=0\) có đúng 2 nghiệm là 0 và 1

Vậy phương trình đã cho có 2 nghiệm là \(x=0;x=1\)

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

9 tháng 5 2016

\(\Leftrightarrow7.2^x=13.3^x\Leftrightarrow\left(\frac{3}{2}\right)^x=\frac{7}{13}\Leftrightarrow x=\log_{\frac{3}{2}}\frac{7}{13}\)

9 tháng 5 2016

Từ bất phương trình ban đầu \(\Leftrightarrow25.5^x-5.5^x>9.3^x-3.3^x\)

                                            \(\Leftrightarrow20.5^x>6.3^x\)

                                            \(\Leftrightarrow\left(\frac{5}{3}\right)^x>\frac{3}{10}\)

                                            \(\Leftrightarrow x>\log_{\frac{5}{3}}\frac{3}{10}\)

\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\)

\(2\sqrt{1-x}-\sqrt{1+x}+2\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{\left(1-x\right)\left(1+x\right)}=3-x\)

\(2\sqrt{1-x}\left(1-\sqrt{1+x}\right)-\sqrt{1+x}\left(1-\sqrt{1-x}\right)=3-x\)

NV
23 tháng 7 2020

ĐKXĐ: \(x\ne\left\{0;\frac{-3\pm\sqrt{13}}{2}\right\}\)

Phương trình tương đương: \(\frac{x^2+\frac{1}{x^2}-1}{x-\frac{1}{x}+3}=\frac{1}{2}\)

Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)

Pt trở thành: \(\frac{a^2+1}{a+3}=\frac{1}{2}\)

\(\Leftrightarrow2a^2+2=a+3\)

\(\Leftrightarrow2a^2-a-1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=1\\x-\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-1=0\\2x^2+x-2=0\end{matrix}\right.\) (casio)

Nhẩm nghiệm bằng 2 nên bình phương luôn:>>

ĐK \(x\ge1\)

\(PT\Leftrightarrow x-1=x^4-2x^3-5x^2+6x+9.\)

\(\Leftrightarrow x^4-2x^3-5x^2+5x+10=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-5x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x^3-5x-5=0\left(1\right)\end{cases}}\)

Giải (1)

Đặt x=y3 (làm cho nhanh)

Thay vào ta được

\(\left(y^3-\frac{5}{2}\right)^2=\frac{45}{4}\)

Đến đây tự giải 

Học tốt!!!!!!!!!!

2 tháng 11 2019

ĐKXĐ:\(x\ge1\)

PT\(\Leftrightarrow\left(x-2\right)\left[\left(x+1\right)+\frac{1}{\sqrt{x-1}+1}\right]=0\)

Cái ngoặc to vô nghiệm vậy x = 2. Done!