Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
1: =>|2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>2x=6 hoặc 2x=-4
=>x=3 hoặc x=-2
2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
=>x-3=4
hay x=7
5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=2 hoặc x=-1
b)\(\sqrt{9-4\sqrt{5}}\)=\(\sqrt{9-\sqrt{80}}\)=\(\sqrt{\dfrac{9+\sqrt{9^2-80}}{2}}-\sqrt{\dfrac{9-\sqrt{9^2-80}}{2}}\)=\(\sqrt{5}\)\(-\)\(\sqrt{4}\)=\(2-\sqrt{5}\)
(dựa theo công thức có sẵn từ một quyển sách nâng cao:\(\sqrt{A\pm\sqrt{B}}\)=\(\sqrt{\dfrac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\dfrac{A-\sqrt{A^2-B}}{2}}\)
c: \(\Leftrightarrow4x^2-6x+9=16\)
\(\Leftrightarrow4x^2-6x-7=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{37}}{4};\dfrac{3-\sqrt{37}}{4}\right\}\)
d: \(=\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\)
\(=\dfrac{1}{2}\sqrt{3}+\dfrac{5}{2}\)
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
\(\sqrt{x^2-1}-x^2+1=0\)
\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)
\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)
\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)
Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)
b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
\(\sqrt{x^2-4}-x+2=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)
kl: x=2
c) \(\sqrt{x^4-8x^2+16}=2-x\)
\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)
\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)
Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)
(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)
Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)
Kl: x=-3, x=-1,x=2
d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)
Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)
(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)
Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)
(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)
Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)
e) Đk: \(x\ge-\dfrac{3}{2}\)
\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)
\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)
kl: \(x=-\dfrac{5}{8}\)
f) Đk: x >/ 5
\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\left(N\right)\)
kl: x=9
Mình làm một vài câu thôi nhé, các câu còn lại tương tự.
Giải:
a) ??? Đề thiếu
b) \(\sqrt{-3x+4}=12\)
\(\Leftrightarrow-3x+4=144\)
\(\Leftrightarrow-3x=140\)
\(\Leftrightarrow x=\dfrac{-140}{3}\)
Vậy ...
c), d), g), h), i), p), q), v), a') Tương tự b)
w), x) Mình đã làm ở đây:
Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến
z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)
\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow4\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
- Câu a có chút thiếu sót, mong thông cảm :)
\(\sqrt{3x-1}\) = 4
Câu 1:
PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)
\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)
Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)
\(PT\Leftrightarrow a^2+2b-4=ba\)
\(\Leftrightarrow (a^2-4)-b(a-2)=0\)
\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)
Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)
Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)
\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)
\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)
Vậy..........
Câu 2:
ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)
\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)
Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)
Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)
\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)
Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)
Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)
Vậy...........
a, \(\sqrt{4-x}=2\sqrt{2}\)đk x =< 4
\(\Leftrightarrow4-x=8\Leftrightarrow x=-4\left(tmđk\right)\)
b, \(\dfrac{5}{3}\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+2\sqrt{6x}=2\)đk x >= 0
\(\Leftrightarrow4\sqrt{6x}=2\Leftrightarrow\sqrt{6x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}:6=\dfrac{1}{24}\left(tmđk\right)\)
3,đk x>= -1 \(4\sqrt{1+x}-3\sqrt{1+x}=5\Leftrightarrow x+1=25\Leftrightarrow x=24\left(tmđk\right)\)
4, \(2\left|x-1\right|=4\Leftrightarrow\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
.