![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Theo định nghĩa về giới hạn thì khi \(\lim_{x\to -\infty}f(x)=2; \lim_{x\to -\infty}g(x)=3\) thì \(\lim_{x\to -\infty}[f(x)-2]=0; \lim_{x\to -\infty}[g(x)-3]=0\)
Khi đó, theo định nghĩa về giới hạn 0 thì với mọi số \(\epsilon >0\) ta tìm được tương ứng $n_1,n_2$ sao cho:
\(\left\{\begin{matrix} |f(x)-2|<\frac{\epsilon}{2}\forall n>n_1\\ |g(x)-3|< \frac{\epsilon}{2}\forall n>n_2\end{matrix}\right.\)
Gọi \(n_0=\max (n_1,n_2)\)
\(\Rightarrow |f(x)-2+g(x)-3|< |f(x)-2|+|g(x)-3|< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \) \(\forall n>n_0\)
Điều này chứng tỏ \(f(x)-2+g(x)-3=f(x)+g(x)-5\) có giới hạn 0
\(\Rightarrow \lim_{x\to -\infty}[f(x)+g(x)]=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)
\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)
\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)
\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)
\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)
P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Bích Hà
Điện thoại thì bạn chụp hình đề bài gửi lên cho lẹ :D
Ko gửi trực tiếp được ở câu hỏi, nhưng dưới cmt thì gửi bình thường, chỗ này nè:
Bạn cần câu 8 đúng ko?
\(\left\{{}\begin{matrix}-1\le sina\le1\\-1\le cosb\le1\end{matrix}\right.\) với mọi góc a;b
Do đó: \(-4\le sin2x-3cosx\le4\)
\(\Rightarrow\frac{-4}{x^2+\sqrt{x}+1}\le\frac{sin2x-3cosx}{x^2+\sqrt{x}+1}\le\frac{4}{x^2+\sqrt{x}+1}\)
Mà \(\lim\limits_{x\rightarrow+\infty}\frac{-4}{x^2+\sqrt{x}+1}=\lim\limits_{x\rightarrow+\infty}\frac{4}{x^2+\sqrt{x}+1}=0\)
\(\Rightarrow\lim\limits_{x\rightarrow+\infty}\frac{sin2x-3cosx}{x^2+\sqrt{x}+1}=0\) (theo định lý giới hạn kẹp)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x-3}{-\left(x-3\right)}=-1\) rút gọn tử mẫu cái ra luôn mà
Nguyễn Bích Hà
Ko dịch được đề, đoán đại là \(\lim\limits\left(\sqrt[3]{n+1}-\sqrt[3]{n}\right)\) (hay là \(3\sqrt{n+1}-3\sqrt{n}\) ?)
\(\lim\limits\left(\sqrt[3]{n+1}-\sqrt[3]{n}\right)=lim\frac{\left(\sqrt[3]{n+1}-\sqrt[3]{n}\right)\left(\sqrt[3]{\left(n+1\right)^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{n^2}\right)}{\sqrt[3]{\left(n+1\right)^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{n^2}}\)
\(=lim\frac{1}{\sqrt[3]{\left(n+1\right)^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{n^2}}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
=lim \(\frac{\sqrt{1-\frac{4}{n}}-\sqrt{\frac{4}{n}+\frac{1}{n^2}}}{\sqrt{3+\frac{1}{n^2}}+1}=\frac{1}{\sqrt{3}+1}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
= lim \(\frac{\sqrt[3]{8+\frac{1}{n^3}}-1}{2-\frac{3}{n}}=\frac{2-1}{2}=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đoán là \(lim\frac{\sqrt{n^2+2n}-n}{\sqrt{4n^2+n}-2n}=lim\frac{\left(\sqrt{n^2+2n}-n\right)\left(\sqrt{n^2+2n}+n\right)\left(\sqrt{4n^2+n}+2n\right)}{\left(\sqrt{4n^2+n}-2n\right)\left(\sqrt{4n^2+n}+2n\right)\left(\sqrt{n^2+2n}+n\right)}\)
\(=lim\frac{2n\left(\sqrt{4n^2+n}+2n\right)}{n\left(\sqrt{n^2+2n}+n\right)}=\lim\limits\frac{2\left(\sqrt{4+\frac{1}{n}}+2\right)}{\sqrt{1+\frac{2}{n}}+1}=\frac{2\left(2+2\right)}{1+1}=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a=\lim\limits_{x\rightarrow+\infty}\frac{x+\frac{8}{x^2}}{1+\frac{2}{x}+\frac{1}{x^2}+\frac{2}{x^3}}=\frac{+\infty}{1}=+\infty\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{x\left(\frac{1}{x}+3\right)}{\left|x\right|\sqrt{2+\frac{3}{x^2}}}=\lim\limits_{x\rightarrow-\infty}\frac{x\left(\frac{1}{x}+3\right)}{-x\sqrt{2+\frac{3}{x^2}}}=\frac{3}{-\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{x^2\sqrt[3]{\frac{1}{x^6}+\frac{1}{x^2}+1}}{x^2\sqrt{\frac{1}{x^2}+\frac{1}{x}+1}}=\frac{1}{1}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(=\lim\limits\frac{1-\frac{1}{n}}{2+\frac{7}{n}}=\frac{1-0}{2+0}=\frac{1}{2}\)
b/ \(=lim\frac{4-\frac{1}{n}+\frac{1}{n^2}}{6+\frac{1}{n^2}}=\frac{4-0+0}{6+0}=\frac{4}{6}=\frac{2}{3}\)
c/ \(=lim\frac{3-\frac{1}{n}}{\frac{1}{n^2}-1}=\frac{3-0}{0-1}=\frac{3}{-1}=-3\)
d/ \(=lim\frac{\frac{8}{n}+\frac{1}{n^2}}{1-\frac{2}{n}+\frac{19}{n^2}}=\frac{0+0}{1-0+0}=\frac{0}{1}=0\)
e/ \(=lim\frac{\sqrt{9-\frac{4}{n^2}}+2}{2+\frac{7}{n}}=\frac{\sqrt{9}+2}{2+0}=\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)
\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)
\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)
\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)
\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)
=3/4
=>Chọn A