\(\sqrt{x+1}+\sqrt{7-y}=4\)4

và \(\sqrt{y+1}+\sqrt{7...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

ĐKXĐ \(-1\le x,y\le7\)

TA THẤY: \(\sqrt{x+1}+\sqrt{7-y}=\sqrt{y+1}+\sqrt{7-x}\)

DÙNG PHƯƠNG PHÁP ĐÁNH GIÁ :

NẾU \(x>y\) THÌ \(\hept{\begin{cases}\sqrt{x+1}>\sqrt{y+1}\\\sqrt{7-y}>\sqrt{7-x}\end{cases}}\)DO ĐÓ: \(\sqrt{x+1}+\sqrt{7-y}>\sqrt{y+1}+\sqrt{7-x}\)(VÔ LÍ)

NẾU \(x< y\)THÌ \(\hept{\begin{cases}\sqrt{x+1}< \sqrt{y+1}\\\sqrt{7-y}< \sqrt{7-x}\end{cases}}\)DO ĐÓ \(\sqrt{x+1}+\sqrt{7-y}< \sqrt{y+1}+\sqrt{7-x}\)(VÔ LÍ)

VẬY \(x=y\)THAY VÀO PT(1) TA ĐƯỢC:

\(\sqrt{x+1}+\sqrt{7-x}=4\)

\(\Rightarrow x+1+7-x+2\sqrt{\left(x+1\right)\left(7-x\right)}=16\)

\(\Leftrightarrow\sqrt{-x^2+6x+7}=4\)

\(\Rightarrow-x^2+6x+7=16\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow x=3\)(THỎA MÃN ĐKXĐ)

VẬY HỆ PT CÓ NGHIỆM \(\left(x;y\right)\)LÀ \(\left(3;3\right)\)

13 tháng 7 2017

Đánh giá không thành cong nhé bạn @Thảo Lê Thị
Bài này ta trừ pt(I) - pt(II)
Và Liên hợp .
<=> \(\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}+\frac{x-y}{\sqrt{7-y}+\sqrt{7-x}}=0.\\ \left(x-y\right)\left(...\right)=0\\ x=y.\)

Cái trong căn >0 nên không cần phải lo lắng :v
 

12 tháng 6 2020

2b

\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)

12 tháng 6 2020

2 a)

\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

26 tháng 10 2018

Đk : x;y > 7

Từ hệ \(\Rightarrow\sqrt{x+9}+\sqrt{y-7}=\sqrt{y+9}+\sqrt{x-7}\)

         \(\Leftrightarrow x+9+2\sqrt{\left(x+9\right)\left(y-7\right)}+y-7=y+9+2\sqrt{\left(y+9\right)\left(x-7\right)}+x-7\)

        \(\Leftrightarrow2\sqrt{\left(x+9\right)\left(y-7\right)}=2\sqrt{\left(y+9\right)\left(x-7\right)}\)

      \(\Leftrightarrow\left(x+9\right)\left(y-7\right)=\left(x-7\right)\left(y+9\right)\)

      \(\Leftrightarrow xy-7x+9y-63=xy+9x-7y-63\)

      \(\Leftrightarrow2y=2x\)

     \(\Leftrightarrow x=y\)

Thay vào hệ đc: \(\sqrt{x+9}+\sqrt{x-7}=4\)

                       \(\Leftrightarrow x+9+2\sqrt{\left(x+9\right)\left(x-7\right)}+x-7=16\)

                      \(\Leftrightarrow2\sqrt{x^2+2x-63}=14-2x\)

                    \(\Leftrightarrow\sqrt{x^2+2x-63}=7-x\)

    Vì VT > 0

   => VP > 0

 => 7 - x > 0

 => x < 7

Kết hợp ĐKXĐ x >7

=> x = 7

=> y = 7

Vậy x=y=7

Bạn Phạm quang Dương thiếu điều kiện kìa

\(x\ge-9\)nữa

P/s bài làm của bạn đúng rồi

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

3 tháng 12 2016

Bài 1:

\(x^4+2x^3+10x-25=0\)

\(\Leftrightarrow x^4+2x^3-5x^2+5x^2+10x-25=0\)

\(\Leftrightarrow x^2\left(x^2+2x-5\right)+5\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5=0\\x^2+2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5>0\forall x\rightarrow Vn\\\Delta_{x^2+2x-5}=2^2-\left[-4\left(1.5\right)\right]=24\end{array}\right.\)

\(\Leftrightarrow x_{1,2}=\frac{-2\pm\sqrt{24}}{2}\)

 

3 tháng 12 2016

Bài 2:

Đặt \(\begin{cases}\sqrt{x-1}=a\left(a\ge1\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}\)(*) hệ đầu thành:

\(\begin{cases}3a+2b=13\left(1\right)\\2a-b=4\left(2\right)\end{cases}\).Từ \(\left(2\right)\Rightarrow b=2a-4\) thay vào (1) ta có:

\(\left(1\right)\Rightarrow3a+2\left(2a-4\right)=13\)

\(\Rightarrow3a+4a-8=13\Rightarrow7a=21\Rightarrow a=3\) (thỏa mãn)

\(a=3\Rightarrow b=2a-4=2\cdot3-4=2\) (thỏa mãn)

Thay \(\begin{cases}a=3\\b=2\end{cases}\) vào (*) ta có:

(*)\(\Leftrightarrow\begin{cases}\sqrt{x-1}=3\\\sqrt{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=9\\y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=10\\y=4\end{cases}\)

a: \(=\dfrac{2\sqrt{7}-10-6+\sqrt{7}}{4}+\dfrac{24+6\sqrt{7}-20+5\sqrt{7}}{9}\)

\(=\dfrac{3\sqrt{7}-16}{4}+\dfrac{4+11\sqrt{7}}{9}\)

\(=\dfrac{27\sqrt{7}-144+16+44\sqrt{7}}{36}=\dfrac{71\sqrt{7}-128}{36}\)

b: \(=\dfrac{\sqrt{y}\left(x+y\right)}{\sqrt{xy}}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{x+y}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}\)

c: \(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)+3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right)\cdot\dfrac{3\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+3\sqrt{x}-1}{3\sqrt{x}+1}\cdot\dfrac{1}{3\sqrt{x}-5}\)

\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)}\cdot\dfrac{1}{3\sqrt{x}-5}\)

\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-5\right)}\)

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11