Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2b
\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)
2 a)
\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Đk : x;y > 7
Từ hệ \(\Rightarrow\sqrt{x+9}+\sqrt{y-7}=\sqrt{y+9}+\sqrt{x-7}\)
\(\Leftrightarrow x+9+2\sqrt{\left(x+9\right)\left(y-7\right)}+y-7=y+9+2\sqrt{\left(y+9\right)\left(x-7\right)}+x-7\)
\(\Leftrightarrow2\sqrt{\left(x+9\right)\left(y-7\right)}=2\sqrt{\left(y+9\right)\left(x-7\right)}\)
\(\Leftrightarrow\left(x+9\right)\left(y-7\right)=\left(x-7\right)\left(y+9\right)\)
\(\Leftrightarrow xy-7x+9y-63=xy+9x-7y-63\)
\(\Leftrightarrow2y=2x\)
\(\Leftrightarrow x=y\)
Thay vào hệ đc: \(\sqrt{x+9}+\sqrt{x-7}=4\)
\(\Leftrightarrow x+9+2\sqrt{\left(x+9\right)\left(x-7\right)}+x-7=16\)
\(\Leftrightarrow2\sqrt{x^2+2x-63}=14-2x\)
\(\Leftrightarrow\sqrt{x^2+2x-63}=7-x\)
Vì VT > 0
=> VP > 0
=> 7 - x > 0
=> x < 7
Kết hợp ĐKXĐ x >7
=> x = 7
=> y = 7
Vậy x=y=7
Bạn Phạm quang Dương thiếu điều kiện kìa
\(x\ge-9\)nữa
P/s bài làm của bạn đúng rồi
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
Bài 1:
\(x^4+2x^3+10x-25=0\)
\(\Leftrightarrow x^4+2x^3-5x^2+5x^2+10x-25=0\)
\(\Leftrightarrow x^2\left(x^2+2x-5\right)+5\left(x^2+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5=0\\x^2+2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5>0\forall x\rightarrow Vn\\\Delta_{x^2+2x-5}=2^2-\left[-4\left(1.5\right)\right]=24\end{array}\right.\)
\(\Leftrightarrow x_{1,2}=\frac{-2\pm\sqrt{24}}{2}\)
Bài 2:
Đặt \(\begin{cases}\sqrt{x-1}=a\left(a\ge1\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}\)(*) hệ đầu thành:
\(\begin{cases}3a+2b=13\left(1\right)\\2a-b=4\left(2\right)\end{cases}\).Từ \(\left(2\right)\Rightarrow b=2a-4\) thay vào (1) ta có:
\(\left(1\right)\Rightarrow3a+2\left(2a-4\right)=13\)
\(\Rightarrow3a+4a-8=13\Rightarrow7a=21\Rightarrow a=3\) (thỏa mãn)
\(a=3\Rightarrow b=2a-4=2\cdot3-4=2\) (thỏa mãn)
Thay \(\begin{cases}a=3\\b=2\end{cases}\) vào (*) ta có:
(*)\(\Leftrightarrow\begin{cases}\sqrt{x-1}=3\\\sqrt{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=9\\y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=10\\y=4\end{cases}\)
a: \(=\dfrac{2\sqrt{7}-10-6+\sqrt{7}}{4}+\dfrac{24+6\sqrt{7}-20+5\sqrt{7}}{9}\)
\(=\dfrac{3\sqrt{7}-16}{4}+\dfrac{4+11\sqrt{7}}{9}\)
\(=\dfrac{27\sqrt{7}-144+16+44\sqrt{7}}{36}=\dfrac{71\sqrt{7}-128}{36}\)
b: \(=\dfrac{\sqrt{y}\left(x+y\right)}{\sqrt{xy}}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{x+y}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}\)
c: \(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)+3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right)\cdot\dfrac{3\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+3\sqrt{x}-1}{3\sqrt{x}+1}\cdot\dfrac{1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)}\cdot\dfrac{1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-5\right)}\)
Bài 1:
b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)
=>16x+48=5x+7
=>11x=-41
hay x=-41/11
ĐKXĐ \(-1\le x,y\le7\)
TA THẤY: \(\sqrt{x+1}+\sqrt{7-y}=\sqrt{y+1}+\sqrt{7-x}\)
DÙNG PHƯƠNG PHÁP ĐÁNH GIÁ :
NẾU \(x>y\) THÌ \(\hept{\begin{cases}\sqrt{x+1}>\sqrt{y+1}\\\sqrt{7-y}>\sqrt{7-x}\end{cases}}\)DO ĐÓ: \(\sqrt{x+1}+\sqrt{7-y}>\sqrt{y+1}+\sqrt{7-x}\)(VÔ LÍ)
NẾU \(x< y\)THÌ \(\hept{\begin{cases}\sqrt{x+1}< \sqrt{y+1}\\\sqrt{7-y}< \sqrt{7-x}\end{cases}}\)DO ĐÓ \(\sqrt{x+1}+\sqrt{7-y}< \sqrt{y+1}+\sqrt{7-x}\)(VÔ LÍ)
VẬY \(x=y\)THAY VÀO PT(1) TA ĐƯỢC:
\(\sqrt{x+1}+\sqrt{7-x}=4\)
\(\Rightarrow x+1+7-x+2\sqrt{\left(x+1\right)\left(7-x\right)}=16\)
\(\Leftrightarrow\sqrt{-x^2+6x+7}=4\)
\(\Rightarrow-x^2+6x+7=16\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow x=3\)(THỎA MÃN ĐKXĐ)
VẬY HỆ PT CÓ NGHIỆM \(\left(x;y\right)\)LÀ \(\left(3;3\right)\)
Đánh giá không thành cong nhé bạn @Thảo Lê Thị
Bài này ta trừ pt(I) - pt(II)
Và Liên hợp .
<=> \(\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}+\frac{x-y}{\sqrt{7-y}+\sqrt{7-x}}=0.\\ \left(x-y\right)\left(...\right)=0\\ x=y.\)
Cái trong căn >0 nên không cần phải lo lắng :v